Hochschule für Technik Stuttgart

⊢F⊤ Stuttgart zafh.net

Tools for Urban Planning

Prof. Dr. habil. Ursula Eicker

3D Model District Grünbühl Ludwigsburg

Our research institute : zafh.net Stuttgart

- Renewable energy techniques

 (photovoltaics, solar thermal, geothermal, biomass)
- Development of technologies for solar heating and cooling systems
- Development of dynamic simulation tools and models of energy systems and buildings
- Monitoring techniques, communication and optimised system controls
- Development of integrated processes for energy efficient buildings and districts with 3D Models (CityGML, Sketch Up)

HF⊤ Stuttgart zafh.net

- \rightarrow a team of 25 researchers
- \rightarrow close collaboration with Geoinformatics,

Architecture and Urban Planning departments

of the Hochschule für Technik

Motivations and Challenges of 3D City Modeling

A rapid transition of urban areas towards energy efficiency and the adaption to challenges posed by climate change are highly required...

•3D city modeling can play an essential role for energy planners and municipal managers, supporting them with:

- energy diagnosis of the present situation
- coordination of strategies to decrease building energy demand
- …and increase sustainable energy supply concepts
- development of strategies for sustainable transport

•A common, flexible and open city modeling standard is need to:

- deal with different levels of details and data availabilities/qualities
- store and exchange numerous and miscellaneous urban data on a unique support
- provide a visualization of results

Overview city simulation tools

URBAN MODELS

CITYSIM: Microsimulation urban model based on Suntool (2002), includes CitySim scene creation based on XML data exchange, simplified radiosity model for irradiance and daylighting calculations, simplified capacity-resistor multizone building model, occupant behaviour models, simple energy conversion models MODELICA with libraries as a general non causal simulation environment

BUILDING SIMULATION MODELS

ENERGYPLUS: building simulation tool, can include external scenes (building obstructions), TRNSYS, ESP-r, IDA-ICE (mit IFC Import)

DECISION SUPPORT SYSTEMS UrbanSim (Lawrence Berkeley Laboratory) supporting planning and analysis of urban development GIS BASED URBAN SIMULATION mainly visualisation tools

Modern Streets

CityGML

•Standardized (OGC) open data model for virtual 3D Citymodels

Based on ISO 19139 Standard GML (XML based), extended for urban structures
Spatio-semantic Model, linking geometry, topological relationships, semantic data and

design property (for visualization)

Strengths

open standard, regularly updated
already wide-used (at least in Germany)
XML based and extendable
many possibilities of spatial analysis
modeling with 4 possible Level of Details (LOD)

Level of Details in CityGML

LoD 0: Land model with textures
LoD 1: Citymodel, building blocks without roof structure
LoD 2: Citymodel with roof structure and texture
LoD 3: Detailed Architecture model (Outside)
LoD 4: Detailed Architecture model (Outside and Inside)

District heat demand calculation

Development of an integrated process of district heat demand calculation

1.Generation/Import and quality control of a 3D Citymodel (CityGML LoD1/LoD2)

2. Automatized calculation of **building envelop thermal characteristics**

- use of national **building libraries** (building types/ages)
- **updated** with additional information (precise Uvalues, refurbishment etc.)

3.Geometrical Analysis of 3D Model, pre-processing with building parameters

4.Heat demand calculation for each building through the **monthly energy balance** method (EN ISO 13790)

Quality control and analysis of 3D City model

- Quality Control
 - Control closed volume, surface connections
- Volume Calculation
 - ➤ tetraeders decomposition
- Extraction adjacent walls

Thermal Data processing

Geometrical data processing

The heated volume, wall, cellar wall and window areas must be corrected

between the 3D Model and the thermal building model, particularly if:

- •Cellar type = heated/non-heated
- •Attic storey type = non-heated
- •Usage ALKIS = commercial-residential building

Results Visualization

2D GIS - Heat demand in Grünbühl

3D Visualisation – Heat demand in Grünbühl

- Three case studies of District Heat Demand Calculation, with different level of details and input data qualities
- •District Grünbühl, in Ludwigsburg
- •District Rintheim, in Karlsruhe
- •District Neuaubing, in Munich

Case Study 1: Post-war district

Ludwigsburg – Grünbühl

- •Living area: 77.000 m²
- •Energy supply: mainly Gas boilers
- •3D model : LoD1 (roof area from laser scanning)
- •Uvalues deduced from building age and types Information, updated with outside observations

Data collection

- •For apartment dwellings \rightarrow building data collected from owner companies
- •For private buildings \rightarrow on-site observation (survey)

EnEff:Stadt Ludwigsburg - Grünbühl-Sonnenberg ALLGEMEINE ANGABEN		GEE	B_ID			
		STRASS	E_NAME			
Strässenname: Pregelstrasse	Pregelstrasse Hausnr: 7		SE_NR			
Eigentümer/Hausverwaltung:		NUTZ_ALK		nach ALK Definition (Whs; Wghs; Schule)		
Dokumentation Aufnahmen (Fotos)		WOHNTYP		nach IWU Definition (EFH: RH: MFH: GMH)		
Fotonummer Ansicht	Anzahl/Sonstiges					
Fassade Nord		GEBALTKLASSE		nach IWU Definition (A; B;; J)		
Fassade Ost Fassade Süd		VOLLGESCHOSSE		Integer		
Fassade West				Koin / Unhabaiztar/ Pabaiztar Daabaaabaaa		
Eingangsbereich		DACINGESCHOSS_TTP		Kein / Unbeneiziei/ Beneiziei Dachgeschuss		
		KELLER_TYP		Keine / Unbeheizte / Beheizte Keller		
		SANIEF	FASSADE_ID			
			WRICHTUNG	Azimuth		
Gebäude Allgemein			WDAEMD	Dicke der Isolierstoff		
Gebäudetyp(1) Baualter A	Anzahl Vollgeschosse Anzahl Wohneinheiten	-	WDAEMLAMBD	A Wärmeleitfähigkeit der Isolierstoff		
Bauweise (2)	se (2) zu (2): Baustoffer Holz, Beton, Mauerwerk, Andere Baukonstruktion: Massiv- oder Leichtbauweise		WUWERT	Wand U-Werte wenn bekannt		
Hauptnutzung Turn- und Sportverein Grünbühl B	auverfahren: Fertigteilbauweise, Großtafelbauweise, Raumzellenbauweise u (3):		FANTEIL	Fenster Anteil (%)		
Nutzung_EG	EG Wohnen, Verwaltung, Handel/Gewerbe, Bildung&Forschung, Kultur, Religion, Gesundheit, Soziales, Sicherheit&Ordnung, Industrie, Mischnutzung		FTYP	(1 – 5)		
Sockel (J/N und Höhe)	Dachausbau beheizt 📋 Keller keine Info Dachausb. unbeheizt 📄 Keller unbeheizt		FUWERT	Fenster U-Wert wenn bekannt		
Kniestock (J/N und Höhe)	kein Dachausbau 🗌 Keller beheizt		FSCHATTEN	Fenster Schatten Faktor		
C		WSCHAD	Wand Schädigung (1 - 5)			

Outside facade state of post-war buildings

Integration of a "facade damage index" (0 - 5) in the 3D Model dataset

- •Used for the infiltration rate assessment
- •Potential use to define refurbishment priorities in a refurbishment scenario

16

Building and refurbishment year

- •1/3 post-war buildings
- •Since 1990, 1% of the district living area is refurbished yearly

Heat demand calculation

- •Average: 106 kWh/m²/yr
 - from 30 for newly refurbished buildings to 216 kWh/m²/yr for old leaky buildings

Comparison with gas consumptions* (average over the last 6 years)

≻Global Deviation: 18%

* Assumptions : Domestic hot water: 20 kWh/m²; Gas boiler efficiency: 85%

Case Study 2: partly refurbished Apartment dwellings Karlsruhe – Rintheim

- •Living area: 65.000 m² (36 Buildings 1/3 refurbished)
- •Energy supply: Gas boilers
- •3D model: Karlsruhe LoD2 model (roof area from laser scanning)
- •Precise information on Uvalues (building classification in 6 types)

Classification of the building stock in 6 Building Types with same thermal characteristics

- •Type 1 and 2: original state, not refurbished
- •Type 3: partly refurbished (facade in 1975, roof in 2003)
- •Type 4 to 6.2: full-refurbishment of buildings between 1998 and 2008

Building Class	Туре 1	Type 2	Type 3	Type 4	Type 5	Туре 6.1	Type 6.2
	Multi		multi	Multi	Multi		Multi
Building Type	family	High rise	family	family	family	High rise	family
Year of construction / Full refurbishment	1954-1956	1974	1975	1998	2000	2007	2008
U-value wall	1,40	0,80	0,40	0,30	0,20	0,10	0,10
U-value roof / top level	1,17	0,35	0,20	0,35	0,35	0,10	0,20
U-value basement ceiling	1,65	0,71	0,85	0,47	0,47	0,25	0,38
U-value window	3,20	2,70	2,70	1,70	1,40	1,30	1,30
g-value window	0,80	0,76	0,76	0,63	0,62	0,60	0,60
∆U thermal bridge	0,10	0,10	0,10	0,05	0,05	0,03	0,03
air exchange rate	0,70	0,70	0,70	0,60	0,60	0,60	0,60

Individual building comparison – Simulated and measured heat demand*

- •Average gas consumption over 3 years
- •Total district deviation: 6,7%
- •Standard deviation: 18%

Building type comparison – Simulated and measured heat demand*

- •Building types II V match well (deviation ~5%)
- •Low-energy building type VI \rightarrow 18% under-estimated heat demand

•Non-refurbished building type I \rightarrow 32% over-estimated heat demand

Case study 3 : München – Neuaubing

Case Study 3: 80s Residential complex

München – Neuaubing

- •Living area: 28.000 m² (335 apartments)
- •Energy supply: central gas heating
- •3D model: LoD2 (generated manually with original plans)
- •Uvalue from original plans, updated with refurbishment measures

Case study 3 : München – Neuaubing

Residential complex partly

insulated

- •Original Roof insulation
- •Outwalls originally not insulated
- •... but after 1990 partly and variably insulated

Case study 3 : München – Neuaubing

Heat demand calculation

•Because of different wall insulations, solar gains (orientation of windows) and relative positions, the heat demands vary between **70 and 96 kWh/m²/yr** for the different buildings blocks (**average: 78 kWh/m²/yr**)

Comparison with the central gas consumption* (average over the last 3 years)

•Heat demand from gas consumption: 74,9 kWh/m²/yr → deviation: 4%

Potential causes of the deviation

Potential causes of the deviation

•Geometry

- the heated volume is often over-estimated
- •Set-point temperature and heating operation plans
 - day and night heating plans are the same for all in the simulation (night: 7h/day)
 - individual room heating, dependent on the usages (sleeping room vs. living room), is not taken into account in the simulation (instead: monozone building model)

•Air change

- the air change in naturally ventilated buildings (especially old buildings) in winter seldom reaches the assumptions, corresponding to hygienic requirements (0,6 AC/H)
- •Missing information concerning heat systems
 - influences the comparison with gas consumption data
- •Missing information on recent refurbishment operations
- •User behaviour
 - Individual consumer behaviour regarding energy usage is always difficult to simulate

Use of 3D City Model for urban planning

Use of 3D City Model for urban planning

- •Refurbishment scenario and energy saving potentials
- •Definition of refurbishment priorities, temporal planning of the urban renewal
- •Calculation of refurbishment investment/global energy costs

Energy savings [%] - Grünbühl

Refurbishment Costs [€/m²] - Grünbühl

Outlook and conclusions

- Very large 3D data based based on CityGML standard available
- Many models available for urban radiation, occupant behaviour (CitySim) or renewable energy systems (INSEL, TRNSYS)
- General modeling languages availables, where libraries are rapidly developing (Modelica)
- Interfacing between simulation tools and 3D data (BIM or CityGmI) still a challenge
- 3D city simulation based on CityGML allows good possibilities for urban heat demand simulation, planning of district heating system extension, decentralised renewables production, in coordination with heat demand decrease strategies

Hochschule für Technik Stuttgart

Thank you for your attention!