NACHHALTIG wirtschaften

Haus der Zukunft-Berichtsnavigator

V 1.0

8. August 2011

DI Thomas Lewis Dr. DI Ernst Schriefl

Inhaltsverzeichnis

1	Technische Erläuterungen zum Gebrauch der Materialiensamm- lung		
2	Aufbau des Dokuments		
3	Die Projekte		
	3.1 Pr. "Utendorfgasse"		
	3.2 Pr. "FH Kufstein"	1	
	3.3 Pr. "Ludesch"	1	
	3.4 Pr. "S-House"		
	3.5 Pr. "SOL4"	2	
	3.6 Pr. "Altbausanierung mit PH-Praxis"	2	
	3.7 Pr. "Christophorushaus"	3	
	3.8 Pr. "Mühlweg"		
	3.9 Pr. "Weiz"		
	3.10 Pr. "SAQ, San. Kommun. Gebäude"	4	
	3.11 Pr. "PH-San. denkmalgesch. Gebäude"	4	
	3.12 Pr. "Katalog der Modernisierung v. Objekten aus 50er und 60er Jahren"	4	
	3.13 Pr. "Neue Standards für alte Häuser"	5	
	3.14 Pr. "San. Pettenbach"	5	
	3.15 Pr. "Schiestlhaus"	5	
	3.16 Pr. "Steigerung des Bauvolumens um $500%$ durch stand. Sanierung" .	5	
	3.17 Pr. "Das ökologische Passivhaus"	5	
	3.18 Pr. "San. Makartstraße"	5	
	3.19 Pr. "PH-Kindergarten Ziersdorf"	5	
	3.20 Pr. "Tattendorf"	5	
	3.21 Pr. "San. Schwanenstadt"	6	
	3.22 Pr. "Sanierung in Schutzzonen"	6	
	3.23 Pr. "Wandsysteme aus Nawaros"		
	3.24 Pr. "Biomassefeuerungen für Objekte mit niedrigem Energiebedarf" .	7	
	3.25 Pr. "PH-Scheitholzofen"	7	
	3.26 Pr. "San. Tschechenring"	7	
	3.27 Pr. "Hochbauplaner der Zukunft"	7	
	3.28 Pr. "Haus Zeggele"	7	
	3.29 Pr. "Kooperative Sanierung"	7	
	3.30 Pr. "Sanierung WOP, Weinheberstraße"	7	
	3.31 Pr. "Begleituntersuchung Roschégasse"		
	3.32 Pr. "Einfach: wohnen"		
	3.33 Pr. "grünes LICHT"	8	

	4.1.1	Werden im mehrgeschoßigen Passivhaus-Wohnbau und bei Burog	ebaud
		Erdreichwärmetauscher vorgesehen?	94
	4.1.2	Welche Lüftungskonzepte setzen sich im mehrgeschoßigen Passivh	
		Wohnungsneubau durch?	94
	4.1.3	Welche Konzepte mechanischer Lüftung in der Sanierung?	94
	4.1.4	Unkonventionelle Luftführungen in der Sanierungen	95
	4.1.5	Kann die Zuluftnachheizung auch nicht-elektrisch und nicht-	
	1.1.0	hydraulisch erfolgen?	95
	4.1.6	Welche innovativen Ansätze zur Regelung des Luftvolumen-	00
	1.1.0	stroms wurden umgesetzt?	95
	4.1.7	Welche Bandbreite für den personenspezifischen Nichtraucher-	50
	1.1.1	Frischluftbedarf bei der Auslegung von Lüftungssystemen im	
		Büro-Passivhaus ist anzutreffen?	95
	4.1.8	Welche Bandbreite für die Maximaltemperatur in rein frischluft-	55
	4.1.0	beheizten Büro-Passivhäusern ist anzutreffen?	95
	4.1.9	Möglichkeiten zur Vor- bzw. Nachheizung der Zuluft	96
		Einzelfragen zur Luftdichtheit	96
4.2		chnik	90 97
4.2	4.2.1	Wurden rein frischluftbeheizte Passivhäuser gebaut?	97
	4.2.2	Kam in Passivhaus-Bürohäusern Solarthermie zum Einsatz?	97
	4.2.3	Welche Variante für raumweise Heizflächen in Passivhäusern	91
	4.2.0	im mehrgeschoßigen Wohnbau ist aus wirtschaftlicher Sicht	
		optimal?	97
	4.2.4	Welche Modalitäten werden für die Abrechnung des Heiz- und	91
	7.2.7	Warmwasserwärmeverbrauchs bevorzugt?	97
	4.2.5	Wurde Latentwärmespeicherung eingesetzt?	98
	4.2.6	Wurde im Neubau auch eine rein-elektrische Warmwassererzeu-	50
	1.2.0	gung eingesetzt?	98
	4.2.7	Ist die Direktwarmwasserversorgung von Geschirrspülern und	00
	1.2.1	Waschmaschinen im mehrgeschoßigen Wohnbau ein Thema? .	98
	4.2.8	Wie wird in der Sanierung mit raumluftabhängigen Feuerstätten	
	1.2.0	umgegangen?	98
	4.2.9	Wie sicher ist es, auf die Herstellung eines neuen Fernwärmeansch	
	1.2.0	bei Passivhäusern zu setzen?	98
	4.2.10	Völliger Stromausfall in einem rein frischluftbeheizten Pas-	
		sivhaus in der Kernheizperiode: wie rasch kühlt das Objekt	
		aus?	99
	4.2.11	Auf welche operative Innentemperatur wurden die Passivhaus-	
		projekte ausgelegt?	99
4.3	Fenste	r	99
	4.3.1	Wärmebrückenauswirkung unterschiedlicher Fenstermontageart-	
		en	99
	4.3.2	Einsatz PHI-zertifizierter Fenster	99
	4.3.3	Fenster und Kosten	
4.4		ge Baukonstruktionen	

NACHHALTIGwirtschaften

	4.4.1	weiche bewühten Abweichungen von "konservativen kegein
		des solaren Bauens wurden gemacht?
	4.4.2	Wie erfolgte der Einsatz von PHPP sowie dynamischer Gebäudesimulation? 100
	4.4.3	Vermeidung sommerlicher Überwärmung durch sorgfältige Pla-
		nung im Holzbau
	4.4.4	Welche Rolle spielte bei Passivhausprojekten die PHI-Zertifizierung? 101
	4.4.5	Welche Rolle spielte bei Passivhausprojekten die klima:aktiv-
	4.4.0	Zertifizierung?
	4.4.6	Können Technikleitungen in der außenliegenden Wärmedämmschicht
	4.4.0	(WDVS) geführt werden?
	4.4.7	Gibt es in der Sanierung Probleme bei der Befestigung einer
	4.4.1	vorgehängten Fassade?
	4.4.8	
	4.4.0	Soll das Stiegenhaus in die thermische Hülle einbezogen werden oder nicht?
4 5	Ö11-	
4.5		gisches Bauen
	4.5.1	
	1 5 0	Auswirkungen der eingesetzten Baustoffe Rücksicht? 102
4.0	4.5.2	Inwieweit wurden Berechnungen und Simulationen eingesetzt? 103
4.6		ımdämmung
	4.6.1	Wann ist es vorteilhaft, Vakuumdämmung einzusetzen? 104
	4.6.2	In welchen Konstruktionsbereichen kann die Vakuumdämmung
		eingesetzt werden?
	4.6.3	Was ist beim Umgang mit Vakuum-Dämmplatten besonders
		zu beachten?
	4.6.4	Welche Dämmwerte sind für VIP realistischerweise anzunehmen?
		Welche Erfahrungen liegen zum Verlust der Dämmwirkung
		aufgrund des Vakuumverlusts vor? Wie lange hält das Vakuum?109
	4.6.5	Welche Firmen bieten Vakuumsysteme an? Welche Zulassun-
		gen sind erforderlich?
	4.6.6	Welche Kosten sind mit Vakuumdämmung verbunden? Sind
		Kostensenkungen zu erwarten?
	4.6.7	Ist Vakuumdämmung in einer ganzheitlichen ökologischen Bi-
		lanzierung vertretbar?
	4.6.8	In welchen "Haus der Zukunft"-Projekten wurde Vakuumdämmung
		eingesetzt und die dabei gemachten Erfahrungen dokumentiert?110
4.7	Meßte	echnische Evaluierung von Passivhaus-Projekten 111
	4.7.1	Im Bad in Passivhäusern in der Regel aktive Heizung vorgesehen 111
	4.7.2	Wurde Thermographie eingesetzt?
4.8	Einsa	tz von Nawaros
	4.8.1	Ist die Genehmigung eines Gebäudes in Strohballenbauweise
		schwieriger zu erreichen als bei einem konventionellen Gebäude?
		Was ist diesbezüglich zu beachten? Welche technischen Prüfzeugnisse
		existieren?
	4.8.2	Wie groß ist der ökologische Gesamtvorteil der Strohballen-
		bauweise?

Wo finde ich Best-Practice Beispiele von Gebäuden in Stro-
hballenbauweise?
Wo befinden sich Beispiele für <mark>Detaillösungen</mark> (Wärmebrückenfreiheit
Luftdichtheit, Anschlussdetails) von Konstruktionen im Stro-
hballenbau (bzw. allgemeiner von Konstruktionen mit nachwach-
senden Baustoffen)?
Wie hoch ist die Gefahr von Schimmelbefall? Wie ist das al-
lergene Potenzial von Stroh einzuschätzen?
Wie hoch ist das Risiko von Schädlingsbefall bei einer Stro-
hballenbauweise, welche Vorkehrungen sind dagegen zu treffen? 115
Welches Feuchteverhalten weisen Wände mit Dämmstoffen
aus nachwachsenden Rohstoffen (Stroh, Hanf, Zellulose, Kork,
Flachs) auf?
Welche Wärmeleitfähigkeiten haben nachwachsende Rohstoffe
(Unterschied Prüfbedingungen – praktischer Einsatz)? 116
Wo befinden sich herstellerübergreifende Informationen zu Baupro-
dukten aus Nachwachsenden Rohstoffen?
Welche Bezugsquellen für Baustoffe aus NAWAROs existieren? 117
Weiterführende Literatur (außer HdZ-Berichte)117
Wie groß ist die Auswahl an Passivhausfenstern die im mehrgeschoßi-
gen Wohnbau die Schallschutzanforderungen der Bauordnung
erfüllen?
Kann im Holzbau eine dem Massivbau vergleichbare Luft-
dichtheit erreicht werden?
118

1 Technische Erläuterungen zum Gebrauch der Materialiensammlung

Vorliegendes Dokument erlaubt, über pdf-Hyperlinks Information zu "browsen", die über viele pdf-Dokumente - über die HdZ-Projektberichte - verstreut ist. Folgende Anforderungen wurden an dieses Dokument als Navigationstool gestellt:

- 1. Kompakte Darstellung wesentlicher Inhalte aus den HdZ-Projektberichten (pdf-Dokumente) im vorliegenden Dokument als "Informationsmoleküle" (einzelne, numerierte Zeileneinträge in den Tabellen eine derartige "Projekttabelle" pro HdZ-Projekt).
- 2. Möglichkeit, die jeweilige zu einem dargestellten Informationsmolekül gehörige Originalstelle des entsprechenden HdZ-Projektberichts rasch über Mausklick zu finden.
- 3. Möglichkeit, die Originalstelle im pdf-File auch von einer Papierversion des vorliegenden Dokuments ausgehend zu finden (seitengenaues Zitieren)

Hinweise zu den Projekttabellen (S. 8 ff)

- 1. Die Einträge in der linken Spalte enthalten eine Kurzbeschreibung wesentlicher Inhalte aus dem jeweiligen HdZ-Projektbericht ("Informationsmoleküle").
- 2. Alle derartigen Zeileneinträge in den Tabellen sind tabellenübergreifend durchnumeriert ⇒ eine eindeutige Nummer pro Informationsmolekül.
- 3. Die rechte Spalte in den Tabellen enthält Seitenzahlen, die auf die dem Informationsmolekül entsprechende Stelle im HdZ-Projektbericht verweisen. Jede Seitenzahl ist gleichzeitig auch als Hyperlink an diese Stelle im HdZ-Projektbericht ausgebildet. Die Seitenzahl versteht sich als auf jene Seitenzahlnumerierung bezogen, die im Ausdruck des jeweiligen Berichts praktisch immer in der Fußzeile angegeben ist; sie muß sich nicht unbedingt mit der physischen Seitenzahl decken (viele Berichte beginnen erst nach der Titel- und nach ggf. einigen Einleitungsseiten, Seiten zu numerieren).
- 4. Hyperlinks zu den HdZ-Projektberichten sind stellenweise auch im Text (linke Spalte in den Tabellen) selbst enthalten.

Wie springt man über einen Hyperlink aus vorliegendem Dokument zu einem HdZ-Projektbericht? Ctrl-Taste gedrückt halten und auf den Hyperlink mausklicken. Die gedrückte Ctrl-Taste verhindert, daß das vorliegende Quelldokument, in dem Sie klicken, beim Öffnen des Zieldokuments automatisch geschlossen wird.

Einschränkungen zur Hyperlinkfunktion Nicht bei allen HdZ-Projektberichten funktioniert der Hyperlink so, daß die auf die gewünschte Seite gesprungen wird. Manche Dokumente werden bei Mausklick zwar geöffnet; die nach der Dokumentöffnung angezeigte Seite ist aber immer die Seite 1.

2 Aufbau des Dokuments

- 1. Kapitel 3, "Die Projekte": Vorstellung der einzelnen HdZ-Projekte in Tabellenform. Jede Projekttabelle enthält die wichtigsten Punkte aus dem entsprechenden HdZ-Projektbericht.
- 2. Kapitel 4, "Beratungsthemen": Diskussion ausgewählter Energieberatungsthemen auf der Basis der vorgestellten Projekttabellen.

Enthalten ist auch ein Glossar.

3 Die Projekte

Tabelle 1 enthält eine Übersicht über alle im vorliegenden Projekt gescreenten HdZ-Projekte.

Spalte "Dateiname (auf CD)" Die Namensgebung der pdf-Dateien (Projektberichte) erfolgte nach Ermessen der Autoren gemäß dem Schema "P000String", wobei

- 1. "000" für eine fortlaufende Nummer
- 2. "String" für einen möglichst das Projekt gut beschreibenden Kurztext

stehen.

Beispiel: P033PHSanLueftEFHausPettenbach.

Tab. 1: Übersicht über gescreente Projekte

Projektkurz-	Projekttitel	Dateiname (auf CD)
bezeichnung in vorliegendem Dokument	1 Tojokuutuoi	Baremaine (auf OD)
Pr. "PH-San. denkmalgesch. Gebäude"	Ökologische Sanierung eines denkmalgeschützten Gebäudes mit Pas- sivhaustechnologien	P015PHSanDenkmalgeschuetzteGebaeude
Pr. "San. Tschechenring"	Wohnhaussanierung Tschechenring	P016SanTschechenringFelixdorf
Pr. "Weiz"	Erprobung von Passivhausstandards am Beispiel des Weizer - Energie - Innovations - Zentrums	P021PHBueroWeizerEnergieInnovZentrum
Pr. "San. Schwanenstadt"	Erste Passivhaus -Schulsanierung	P026PHSchulSanSchwanenstadt
Pr. "Mühlweg"	Mehrgeschossiger geförderter Wohnbau für 70 Wohneinheiten Holzmassivbauweise, Pas- sivhausstandard Mühlweg, 1210 Wien	P027PHHolzMehrfamMuehlweg
Pr. "PH- Scheitholzofen"	Passivhaustauglicher Scheitholzofen kleiner Leistung	P029PHHeizHolzScheitholzofenKleinerLeistung
Pr. "San. Pettenbach"	Erstes Einfamilien-Passivhaus im Altbau (Umsetzung des Passivhausstandard und -komfort in der Altbausanierung von Einfamilienhäusern am Beispiel EFH Pettenbach/OÖ)	P033PHSanLueftEFHausPettenbach
Pr. "Haus Zeggele"	Haus Zeggele in Silz	P036SanHausZeggeleSilz
Pr. "San. Makartstraße"	Erstes Mehrfamilien-Passivhaus im Altbau (Makartstraße, Linz)	P037PHSanMehrfamMakartstrasse
Pr. "SOL4"	Sol4 Büro-und Seminarzentrum Eichkogel	P040PHBueroSOL4Eichkogel
Pr. "grünes LICHT"	grünes LICHT, Sanierung eines großvolumigen Wohnbaues zum Passivhaus	P042PHSanMehrfamGruenesLicht
Pr. "Ludesch"	Neubau ökologisches Gemeindezentrum Ludesch	P044KostGemeindezentrumLudesch
Pr. "Sanierungskat- alog Gebäude 50er/60er Jahre"	Katalog der Modernisierung Fassaden- und Freiflächenmodernisierung mit standard- isierten Elementen bei Geschosswohnbauten der fünfziger und sechziger Jahre	P047SanMehrfamKatalogDerModernisierung

Tab. 1: Übersicht über gescreente Projekte – Fortsetzung.

D : 1444 1			
Projektkurz- bezeichnung in vorliegendem Dokument	Projekttitel	Dateiname (auf CD)	
Pr. "Sanierung WOP, Wein- heberstraße"	WOP - Wohnbausanierung mit Passivhaustechnologien, Linz, Österreich	P048PHSanMehrfamWOPSanierungLinz- MitPHTechnologien	
Pr. "Utendorfgasse"	Anwendung der Passivtechnologie im sozialen Wohnbau	P059PHMehrfamSozialer- WohnbauUtendorfgasse	
Pr. "Tattendorf"	Lehm - Passiv Bürohaus Tattendorf	P064PHBueroLehmHausTattendorf	
Pr. "FH Kufstein"	Technischer Status von Wohnraumlüftungen	P067LueftTechnischerStatus- VonWohnraumanlagenFHKufstein	
Pr. "SAQ, San. Kommun. Gebäude"	SAQ - Sanieren mit Qualität - Qualitätskriterien für die Sanierung kommunaler Gebäude	P071SAQSanierenMitQualitaet- KommunGebaeude	
Pr. "Neue Standards für alte Häuser"	Neue Standards für alte Häuser, Nachhaltige Sanierungskonzepte für Einfamilienhaus- Siedlungen der Zwischen- und Nachkriegszeit	P075SanNeueStandardsFuerAlteHaeuser	
Pr. "Altbausanierung mit Passivhauspraxis"	Strategien zur Marktaufbereitung für die Implementierung von Passivhauskomponenten in der Althaussanierung	P077PHSanAltbausanierungMitPHPraxis	
Pr. "Einfach:wohnen"	Einfach:wohnen, Phase Errichtung	P082PHEinfachWohnenErrichtungsphase	
Pr. "Kooperative Sanierung"	Kooperative Sanierung	P086SanEBMehrfamKooperativeSanierung	
Pr. "Steigerung des Bauvolu- mens um 500% durch stand. Sanierung"	Wege zur Steigerung des Bauvolumens um 500% bei standardisierter thermischer Althaussanierung	P093SanSteigerungBauvolumen500Prozent	
Pr. "Sanierung in Schutzzonen"	Energetische Sanierung in Schutzzonen	P099SanEnergetischeSanierungInSchutzzonen	
Pr. "Schiestlhaus"	Alpiner Stützpunkt - Schiestlhaus am Hochschwab – Phase Errichtung	P101PHSchiestlhausErrichtung	
Pr. "Christophorushaus"	Christophorushaus	P114PHHolzBueroChristophorusHaus	
Pr. "Wandsysteme aus Nawaros"	Wandsysteme aus Nachwachsenden Rohstoffen	P159WandsystemeNAWAROs	

Tab. 1: Übersicht über gescreente Projekte – Fortsetzung.

Projektkurz-	Projekttitel	Dateiname (auf CD)
bezeichnung in		
vorliegendem		
Dokument		
Pr. "An-	Anforderungsprofile für Biomassefeuerungen	P161HeizHolzAnforderungenAnHeizungen-
forderungspro-	zur Wärmeversorgung von Objekten mit niedrigem Energiebedarf	BeiNiedrigemEnergiebedarf
file für kleine	mearigem Energiesedan	
Biomasse-		
feuerungen"		
Pr. "Das	Das ökologische Passivhaus	P167PHDasoekologischePassivhaus
ökologische		
Passivhaus"		
Pr. "S-House"	S-House Innovative Nutzung von nachwachsenden Rohstoffen am Beispiel eines Büro- und Ausstellungsgebäudes	P168PHBueroSHouse
Pr. "Begleitun-	Begleituntersuchung Roschégasse	HdZ300RoschegasseNeuMehrgeschoss
tersuchung		
Roschégasse"		
J		

Pr. "Utendorfgasse" 3.1

Tab. 2: Innovationen im Projekt Passivhaussiedlung Utendorfgasse.

Inhalt	Seite
Baukonstruktionen / Sanierung	
1: Kosten Brandschutzriegel: Kosteneinfluß des Brandschutzriegels	5
auf die Quadratmeterkosten WDVS zwischen 1,52 €/m² und 3,04	
€/m². (Brandschutzriegel = Mineralwolleriegel über Fenstersturz	
in der WDVS-Ebene)	
2: Brandschutzriegelvarianten: Sechs verschiedene Varianten von	62
Brandschutzriegeln wurden getestet. Die Brandschutzriegel un-	
terscheiden sich v.a. im Material (Mineralwolle, PUR, zellstof-	
fverstärktes Kalziumsilikat) und darin, ob eine EPS-Auflage ver-	
wendet wird oder nicht. Drei dieser getesteten Varianten haben den	
Großbrandversuch bestanden (PUR-Brandriegel mit EPS-F Ab-	
deckung, Mineralwolle Brandriegel mit EPS-F Abdeckung, Sturz-	
platte aus Masterclima).	
3: Fenster: Maximales, damals (Stand 2003) marktgängiges	50
Schalldämmmaß von lediglich 38 dB	
4: Nicht-Passivhauszertifizierte Fenster: Es wurde versucht, auch	67
Fenster ohne PHI-Zertifizierung zu verwenden	

Tab. 2: Innovationen im Projekt Passivhaussiedlung Utendorfgasse. – Fortsetzung.

Inhalt	Seite
5: Wärmetechnischer Vergleich unterschiedlicher Fenstermontagen:	68
Wärmebrückenuntersuchung zweier Fenster-Befestigungsvarianten	
(Stahlwinkel, Holzstaffel). Ergebnis: praktisch kein Unterschied in	
der Wärmebrückenwirkung zwischen den Varianten.	
6: Fenster im Passivhaus: Bei Abweichungen vom Passivhauskri-	24
terium für Fenster Nachweis nach DIN 1946 erforderlich.	
7: Wärmedämmverbundsystem in Österreich und Deutschland: Un-	60
terschiedliche Ausführungsarten des Wärmedämmverbundsystems	
in Österreich und in Deutschland verbieten die einfache	
Übertragung bestimmter deutscher Wärmedämmverbundsystem-	
Brandschutzvorschriften in Österreich.	
8: Veraltete Wärmebrückenkataloge: Wärmebrückenkataloge zum	65
Zeitpunkt des Projektes enthielten keine Informationen zu	
Wärmebrücken bei Dämmstärken > 20cm	
9: Übersicht über 12 Passiv-Holzaußenwandkonstruktionen: Kon-	79
struktionen der österreichischen Cost Efficient Passive Houses as	
European Standards (CEPHEUS)-Projekte und weitere relevante	
in Österreich und Deutschland ausgeführte.	
$L\ddot{u}ftunq$	
10: Ansaugung über Dach: Frischluftansaugung sowie Plazierung	37
der eingehausten, mit 30cm Wärmedämmung versehenen	
Lüftungszentrale am Dach	
11: Frostschutz für Lüftungsgerät: Einsatz einer elektrischen	56
Vorheizung der Frischluft als Frostschutz, obwohl zentraler	
Gaskessel vorhanden wäre, dessen Wärme man über Heißwasser	
oder Luft nutzen könnte	
12: Bei der damaligen Planung waren fast keine Kenndaten für	24
Luftauslässe bei geringen Volumenströmen verfügbar (Stand 2003).	
13: Staubverschwelungsgrenze im Lüftungsgerät: Unter Bezug-	24
nahme auf Literatur als Staubverschwelungsgrenze 60°C angegeben.	
14: Thema "Bakterien im Erdwärmetauscher": Zitat einer	19
Studie, die erhöhte Konzentrationen "ganz kleiner" Bakterien im	
Erdwärmetauscher nach dem Ansaugfilter nachgewiesen hat.	
15: Kein Erdwärmetauscher: Die bislang nicht eindeutig	25
nachgewiesene hygienische Unbedenklichkeit wurde neben	_~
Platzbedarf und Kosten als Zusatzargument verwendet, keinen	
Erdwärmetauscher einzusetzen. Die Eisfreiheit wird durch eine	
elektrische Vorheizung gewährleistet.	
elektrische Vorheizung gewährleistet.	

Tab. 2: Innovationen im Projekt Passivhaussiedlung Utendorfgasse. – Fortsetzung.

Inhalt	Seite
16: Stiegenhaus belüftet, beheizt?: Das Stiegenhaus ist zwar nicht beheizt aber in die hochgedämmte thermische Hülle sowie über das Be- und Entlüftungssystem eingebunden. Diese Ausführung ist das Ergebnis der Simulation verschiedener Varianten unterschiedlicher Dämmstärke zwischen Stiegenhaus und Haupthaus sowie an der Außenwand des Stiegenhauses	76
17: Bedeutung der Luftdichtheit der Gebäudeeingangstüre: 20 Pa Druckdifferenz über die Gebäudehöhe bei 5-geschoßigem Gebäude aufgrund des Temperaturgradienten.	23
18: Im Bad in Passivhäusern in der Regel aktive Heizung: Auch, wenn einige angeführte CEPHEUS-Gebäude lediglich per hygienisch erforderlicher Zuluft beheizt werden (Tabelle über diese Gebäude im Bericht enthalten) — im Bad war immer eine zusätzliche Wärmequelle vorgesehen.	16
19: Bezugnahme auf 80 langjährig messtechnisch betreute deutsche Wohngebäude zur Ermittlung der Akzeptanz, und der Abschätzung der realen energetischen Auswirkung des Einsatzes kontrollierter Wohnraumlüftung. Heiztechnik	15
20: Passivhaus-Kriterium nur schwer in Dach- und Erdgeschoß erfüllbar: In vier Wohneinheiten (2 im EG, 2 im DG) sind trotz Passivhaus-Konzept des Gebäudes (ledigliche Zuluftheizung) im Bericht in ein oder zwei Räumen Heizkörper vorgesehen. Letzlich wurde aber doch der rein frischluftbeheizte Passivhaustyp realisiert.	57
21: Fremdbeheizte Nachbarwohnungen wurden in der Planung abweichend von Norm (15°C) durchwegs mit 22°C vorausgesetzt	25
22: 2 Varianten der Heizlastberechnung im Vergleich durchgeführt: (1) nach Norm und (2) nach dynamischer Gebäudesimulation. Allerdings keine Passivhaus-Projektierungspaket (PHPP)- Berechnung erwähnt.	26
23: Bezugnahme auf ein "neues Berechnungsverfahren" für das som- merliche Verhalten von Gebäuden.	26
24: Bei der Ermittlung der Heizlast wurden interne Gewinne von 1,6 W/m² berücksichtigt, bei der Ermittlung des Heizwärmebedarfs 2,1 W/m² (S. 130).	25
25: Erhöhte operative Auslegungstemperatur: Zugrundelegung von 22°C für die zu gewährleistende empfundene Raumtemperatur (statt 20°C Lufttemperatur laut Norm) und Grundannahme permanent beheizter Nachbarwohnungen.	24

Tab. 2: Innovationen im Projekt Passivhaussiedlung Utendorfgasse. – Fortsetzung.

Inhalt	Seite
26: Zentraler Gaskessel: Kostenoptimierungsüberlegungen	58
führten zum Konzept eines zentralen Gasbrennwertkessels mit	
Warmwasserspeicher mit Zirkulation im Tiefgaragengeschoß für	
alle drei Wohnblöcke. Diskussion der Vor- und Nachteile dieser	
zentralen Variante.	
27: Temperaturniveau in einzelnen Räumen einer Wohnung von	18
Raumnutzung abhängig (Bezugnahme auf eine entsprechende	
österreichische Studie).	
28: Das Schlafzimmer wird in Europa im Mittel um 4 K kälter gehal-	18
ten als die anderen Räume (Verweis auf Studie mit Meßergebnissen	
über mehrere europäische Länder - Belgien, Deutschland, Italien	
und Niederlande - hinweg).	
Kosten	
29: Quadratmeterspezifische Baukosten für Passivhäuser im sozialen	5
Wohnbau: Utendorfgasse: Mit 1.055,-€/m² (exkl. Planungskosten)	
niedrigste quadratmeterspezifische Baukosten aller CEPHEUS-	
Projekte.	
30: Angabe von Wartungskosten von Lüftungsanlagen und eines	22
Gasbrennwertkessels in % der Anlageninvestitionskosten (übliche	
Bandbreite)	
Sonstiges	
31: Thermisches Verhalten eines Passivhauses bei Stromausfall:	174
Untersuchung des Verhaltens des Passivhauses bei Ausfall der	
Stromversorgung in zwei Szenarien: Szenario C1: Stromausfall	
während des gesamten Jahres, Szenario C2: Stromausfall im Jänner	
(Auskühlverhalten). Innerhalb der ersten Woche kühlt das Gebäude	
von 22°C auf 16°C aus. Diagramm zum Temperaturverlauf. Das	
Aufheizen von der "Leerlauftemperatur" von etwa 10°C im Jänner	
auf Solltemperatur dauert in etwa einen halben Monat.	
32: Kurzer Abriß der Geschichte der Passivhausentwicklung	8
33: "Passivhaus-Geschichte": Übersicht über bisherige (Stand 2003)	15
Erfahrungen mit der Planung von Passivhäusern und auch anderen	
Häuserkonzepten (Niedrigenergiehaus etc.) und dem realen Heizen-	
ergieverbrauch	

Tab. 3: Hervorzuhebendes im Projekt "Begleituntersuchungen zum Projekt PH Utendorfgasse"

Inhalt	Seite
34: Raumtemperaturen trotz "Hardcore"-Passivhausvariante immer über Auslegungswert: In den vier untersuchten Wohnungen in der Passivhauswohnanlage Utendorfgasse (Wien) liegen die Raumtem-	6
peraturen zu keinem Zeitpunkt im Jahr ungewollt unter dem behaglichen Bereich. Probleme ergeben sich am ehesten im Sommer durch zu hohe Innenraumtemperaturen bei sehr hohen Außentemperaturen.	
35: Risiko, Klima im Sommer als schwül zu empfinden: Die Werte für die relative Raumfeuchte bewegen sich zumeist zwischen 30%-und 65% und damit innerhalb der Behaglichkeitsgrenzen gemäß ISO EN 7730. Von Oktober bis April schwankt die relative Raumluftfeuchte im Bereich zwischen 30% und 40%. Probleme verursacht die höhere Luftfeuchte im Sommer in Kombination mit den teilweise zu hohen Temperaturen, da dieser Luftzustand dann als schwül empfunden werden kann.	7
36: Einhalten der Passivhaus-Grenzwerte für Heizwärmebedarf und Heizlast: Der klimabereinigte Heizwärmebedarf (bzw. eigentlich -verbrauch) liegt bei 12,86 kWh/m² a (nicht klimabereinigt: 15,48 kWh/m² a), die maximale Heizlast bei 9,64 W/m². Der Wärmebedarf für Warmwasser ist mit 23,37 kWh/m² a erwartungsgemäß höher als der Heizwärmebedarf.	8
37: Passivhaus-Grenzwert für Primärenergiebedarf nicht eingehalten: Der Grenzwert für Primärenergiebedarf (120 kWh/m² a) wird mit 170,4 kWh/m² a überschritten. Ausschlaggebend hierfür ist im ersten Messjahr vor allem der relativ hohe Stromverbrauch für Haushaltsgeräte, sowie der Verlustanteil von 17,8% am Gesamtwärmeeintrag von Gasbrennwertkessel und Boiler. Durch einige gezielte Maßnahmen, wie z.B. einer Änderung der Regeleinstellungen für den Gaskessel bzw. für das Verteilsystem, sowie einer Optimierungsmaßnahme beim Betrieb der Lüftungsanlagen kann hier mit einer Verbesserung für das zweite Messjahr gerechnet werden.	9
38: Nachweis der Bedeutung der sommerlichen Nachtlüftung: In einer Wohnung, in der während einer Hitzeperiode konsequent Querlüftung während der Nacht durchgeführt wurde, konnten die Raumtemperaturen während des Tages um 4°C niedriger gehalten werden als in den anderen vermessenen Wohnungen.	10

3.2 Pr. "FH Kufstein"

Tab. 4: Zusatzinfos der FH Kufstein im Projekt Technischer Status von Wohnraumlüftungen.

Inhalt	Seite
39: Liste der häufigsten Probleme bei der Konzeption von	8
Lüftungsanlagen	
40: Liste der häufigsten Fehler bei einzelnen Anlagenteilen von	8
Lüftungsanlagen	
41: Darstellung der Varianten natürlicher Lüftung	27
42: Darstellung der Varianten mechanischer Lüftung	32
43: Kurzer Überblick über generelle Einflüsse auf Raumklima und	18
Behaglichkeit	
44: Überblick zu Fachbegriffen zu Wohnraumlüftungen	44
mit Wärmerückgewinnung. Gute Abgrenzung der Be-	
griffe "Rückwärmezahl", "Wärmerückgewinnungszahl",	
"Wärmebereitstellungsgrad", "elektrisches Wirkungsgrad-	
verhältnis", "Leistungszahl" und "Primärenergieeinsparung"	
45: Betrachtungen zum Thema Lüftung und Energie	47
("Wärmetechnische Grundlagen zur Wohnraumlüftung").	
Erläuterungen der h-x-Diagramme für Sommer- und Winter-	
fall bei einem Erdwärmetauscher	
46: Erläuterung des Themas "Luftdichtheit"	53
47: Erläuterung des Themas "Erdwärmetauscher" inkl.	56
Qualitätsmerkmale eines Erdwärmetauschers	
48: Erläuterung des Themas "Luftfilter" und "Filterqualität"	63
49: Erläuterung des Themas "Schalldämpfer"	66
50: Erläuterung des Themas "Luftmengenauslegung"	67
51: Diskussion verschiedener Lüftungsstrategien	72
52: Beschreibung von Qualitätskriterien für Lüftungsanlagen	77

Pr. "Ludesch" 3.3

Tab. 5: Innovationen im Projekt "Neubau ökologisches Gemeindezentrum Ludesch".

Inhalt	Seite
$\ddot{O}kologie$	
53: Bewertung von Baustoffen in ökologischer Hinsicht mit dem	12
IBO-Passivhaus-Bauteilkatalog (2004) und Ökobilanzierung mit	
Software (Simapro 5.0 und Ecosoft)	
54: Erläuterung einer ökologisch-ökonomischen Abwägung zwischen	60
Gipskarton- und Gipsfaserplatten	
55: Einsatz des Vorarlberger "Ökoleitfadens: Bau" aus dem Jahr	19
2000 als Ergänzung zum IBO-Passivhaus-Bauteilkatalog	

Tab. 5: Innovationen im Projekt "Neubau ökologisches Gemeindezentrum Ludesch". – Fortsetzung.

Inhalt	Seite
56: Einsatz der regional verfügbaren Weißtanne als Außen- und Innenverkleidung inkl. Decke, als massive Holzständer (S. 73), als Fenster- (S. 73) und Türenmaterial (S. 111) sowie gebürstet, unbehandelt für Inneneinrichtungen (S. 111).	40
57: Beschreibung, wie Bauökologie in der Ausschreibung berücksichtigt wurde: Zugrundelegung einer "doppelten Ausschreibung" (neben der ökologischen auch zwingend Anbot zu einer konventionellen Variante). Jedes ausführende Unternehmen mußte eine Produkt-Deklarationsliste ausfüllen, in der die Angaben der Produkte-Lieferanten/Dienstleister zusammengestellt sind (Tabelle 18).	93
58: Bei ausführenden Mitarbeitern/Handwerkern am Bau fehlte das Wissen über Sicherheitsdatenblätter, Inhaltsstoffe und Gefährdungsklassen der verwendeten Baumaterialien gänzlich (S. 134). Bei den Unternehmern selbst war das Wissen vorhanden (S. 133). → Durchführung eines Infoabends für die Arbeiter bereits nach Baustellenbeginn für nachträgliche Aufklärung. Solar	131
59: Einsatz einer transluzenten Photovoltaikanlage des Amstettner Unternehmens Ertex. Detaillierte Angaben zur Ertragsprognose. Lüftung	40
60: Verzicht auf den Einsatz eines Erdwärmetauschers aufgrund der hohen Herstellungskosten und der ökologischen Aufwände (Baggerung, Lkw).	46
61: Heizung und Kühlung des Gebäudes ausschließlich über die Frischluftzufuhr (zwei Ausnahmen: eingemietete Physiotherapie und Eingangsfoyer).	49
62: Abwägung zwischen zentraler und dezentraler Lüftungsvariante. Zum Einsatz kamen vier Lüftungsgeräte für vier Zonen, keine Einzelraumgeräte. Alle Geräte werden über einen zentralen Primärkanal frischluftversorgt.	50
63: Frischluftkonditionierung über Wärmetausch der Luft mit dem Grundwasser, mit der Sole der Solarkollektoren mit Vorlauftemperaturen auch unter 15°C, teilweise gespeichert im Latentwärmespeicher, und der Abluft aus dem zentralen Serverraum. Einsatz einer Nachheizung.	51
64: Frischluftbefeuchtungseinheit in jedem Lüftungsgerät integriert. Dazu auch eine Nachheizung, um die durch die Befeuchtung hervorgerufene Abkühlung zu kompensieren.	51
65: Lufteinblastemperatur von 22°C im Heizlastfall als ausreichend angesehen. Kosten	51

Kosten

Tab. 5: Innovationen im Projekt "Neubau ökologisches Gemeindezentrum Ludesch". - Fortsetzung

- Fortsetzung.	
Inhalt	Seite
66: Prüfung der Wirtschaftlichkeit einer Kälteabsorptionsanlage	47
(letztendlich als Variante ausgeschieden)	
67: Angegebene Mehrkosten für ökologische Materialwahl von nur	138
1,9% (siehe auch S. 109).	
68: Tabellarische Übersicht über die Mehrkosten ökologischer Maß-	121
nahmen im Vergleich zu einer Standardvariante, z. B. 10.052 €	
Mehrkosten durch den Latentwärmespeicher	
Heiztechnik	
69: Einsatz einer Abwärme-Rückgewinnungsanlage der gewerblich	49
notwendigen Kälteanlage für Kühlzellen und -möbel (Gastro-	
Betrieb mit Küche). Wärme aus Rückgewinnung deckt Grundlast	
der Warmwasserbereitung.	
70: Einsatz eines Latentwärmespeichers.	49
71: Realisiertes Wärmeversorgungskonzept: Grundsätzlich han-	47
delt es sich um ein Passivhaus. Darüberhinaus: elektrische	
Zuheizung in den einzelnen Lüftungsgeräten, Solarthermie	
über Pufferspeicher für die Brauchwasserbereitung (Boiler),	
für die Frischluftvorwärmung (noch vor den Lüftungsgeräten)	
und Einspeisung in Pufferspeicher, aus dem die Fußboden-	
heizung gespeist wird. Grundwasser wird nur für Free Cooling	
genutzt (Wärmeentzug über Frischluftzufuhr → entsprechende	
Wärmetauscher zur Kühlung in den einzelnen Lüftungsgeräten),	
aber kein Einsatz einer Grundwasser-Wärmepumpe. Der Anschluß	
an Biomassefernwärme wurde vorgesehen, zum Zeitpunkt der Pla-	
nung konnte aber keine sichere Zusage für die spätere Herstellung	
eines Anschlusses erreicht werden (S. 46).	
72: Elektrische Untertischwarmwasserboiler für Kleinteeküchen,	52
nachdem eine Simulation (S. 49) ergab, daß die Verluste über eine	
zentrale Warmwasserbereitung sehr hoch wären.	
73: Interviews mit neun Handwerkern durchgeführt. Fragen sind	132
angegeben.	
74: Bauökologisches Controlling: Angaben, wie die	95
Qualitätssicherung hinsichtlich der Bauökologie ("Bauökologisches	
Controlling") erfolgte, beginnend bei der Ausschreibung bis hin	
zur Kontrolle der Verarbeitung der Materialien pro Gewerk auf der	
Baustelle: Beschreibung der Prüftätigkeit und der Vorgangsweise	
bei Nichteinhaltung der Vorgaben und von gewerksbezogenen	
Besonderheiten inkl. Fotodokumentation pro Gewerk. Angabe zur	
Größenordnung des Kontrollaufwands (Zeit: S. 104, Kosten: S.	
Tabella umagitia fortagestat	

Tab. 5: Innovationen im Projekt "Neubau ökologisches Gemeindezentrum Ludesch". - Fortsetzung.

Inhalt	Seite
75: Durchführung einer Raumluftmessung in einem ausgewählten	105
Raum (Kursraum): Formaldehyd, Volatile Organic Compounds	
(VOC) (Styrol, Toluol und gesamt)	
Sonstiges	
76: Beschreibung eines systematischen Ablaufs in der Planung zur	58
ökologischen Bauteiloptimierung	
77: Einsatz unangemeldeter Überprüfungen auf der Baustelle	97
(Baustellenkontrolle), um sicherzustellen, daß — vor allem in bezug	
auf die Bauökologie — ausschreibungskonform gearbeitet wird.	
Beschreibung entsprechender Erfahrungen mit den Handwerkern.	
78: Einsatz eines EIB-Systems und dadurch computerunterstützte	53
Energiebuchhaltung.	
79: Auf Basis der Projekterfahrungen wurde das Servicepaket	109
"Nachhaltig:Bauen in der Gemeinde" des Umweltverbandes Vorarl-	
berg entwickelt (Abbildung). Dabei wird der gesamte Prozeß von	
der Vorplanung bis zur Ausführung in drei (vier) Modulen begleitet.	
Kosten: 7.000 - 34.000 €.	
80: Vergleich der Rechenergebnisse für Energie- und	78
"Primärenergiekennzahl" des Gebäudes, berechnet einerseits	
mit PHPP und andererseits mit Transient Energy System Sim-	
ulation Tool (TRNSYS). Aufzeigen der Grenzen des PHPP als	
Planungsinstrument (Berücksichtigung von Nutzungszeiten wie	
im Gastrobereich, von komplexer Anlagentechnik etc.) Fazit →	
Der PH-Nachweis wurde mit PHPP, die Planung mit TRNSYS	
durchgeführt.	101
81: Hervorhebung, daß Handwerker die angenehmeren Verar-	134
beitungsbedingungen von Schafwolle verglichen mit Mineralwolle	
schätzten (Ergebnis aus Interviews mit Handwerkern)	70
82: An einer Stelle im Dokument dürfte statt des üblichen Begriffs	79
"Endenergie" im Bericht "Primärenergie" verwendet worden sein. Hinweise: S. 79f.	
Baukonstruktionen / Sanierung	
83: Alle Bauteilübergänge- und Fensteranschlüsse wurden als	55
Wärmebrücken erfaßt (und mit einem Wärmebrückenprogramm	
simuliert?). Tabelle umseitig fortgesetzt	

Tab. 5: Innovationen im Projekt "Neubau ökologisches Gemeindezentrum Ludesch". – Fortsetzung.

Inhalt	Seite
84: Dämmung mit Nawaros:	54
Zellulose im Wandelement zwischen massiven Holzstehern, Schaf-	
wolle in der <i>Installationsebene</i> , bei den nicht tragenden <i>In-</i>	
nenwänden zwischen Metallständern (S. 62), bei den Zwis-	
chengeschoßdecken zwischen den Trägern bzw. Schwingbügeln (S.	
67) — Ausnahme: keine Schafwolle in den abgehängten Decken der	
Fluchtwege und öffentlichen Gänge wegen brandschutztechnischer	
Auflagen — Schafwolle auch in der Abhängung des Daches sowie	
als Schafwoll-Dämmzopf für die Abdichtung der Baufuge beim Fen-	
stereinbau.	
85: Einsatz von Schafwolle in den Balkonen (Zugang zu den Büros)	69
in mehrschichtigem Aufbau, der auch Mineralwolle vorsieht sowie	
Steinwolle als Trittschalldämmung.	
86: Statt des Abklebens der Stöße der innenseitigen Beplankung	56
Einsatz einer vollflächigen, faserverstärkten Dampfbremse.	
87: Wärmebrückenberechnungsvergleich massive Holzsteher gegen	54
T-Träger: Entscheidung für massive Holzsteher trotz ger-	
ingfügig höherer Wärmebrückenwirkung aus Gründen der re-	
gionalen Verfügbarkeit und Bearbeitung.	
88: Sonnenschutz: Einsatz vorgehängter, blickdurchlässiger (aus	82
dem Innenraum nach außen) Screens mit Hinterlüftungsabstand.	
89: Großflächigere Verglasungen nach Norden zur Tageslichtnutzung	82
im Eingangsbereich und im Café.	
90: Lineare Wärmebrückenkoeffizienten von ≤ 0,06 W/mK	53
angestrebt (nicht die klassischen 0,01 W/mK laut Definition Dr.	
Feist für wärmebrückenfreies Konstruieren).	

3.4 Pr. "S-House"

Tab. 6: Innovationen im Projekt "S-House".

Inhalt	Seite
Baukonstruktionen / Sanierung	
91: Luftdichtes Abdichten der Fenster mit Flachs (vgl. Schafwolle	84
im Pr. "Ludesch", S. 17, Z. 84)	
92: Luftdichte, hochwärmedämmende, recycelbare Glasfassade.	86
93: Passivhaustauglichkeit im Sinne der Luftdichtheit wird	38
ohne den Einsatz einer zusätzlichen Luftdichtigkeitsfolie erre-	
icht. Z. B. auch luftdichtes Aufsetzen des Obergeschosses, ohne	
Folien/Schäume aus fossilen Rohstoffen zu verwenden (Bild S. 81).	

Tab. 6: Innovationen im Projekt "S-House". – Fortsetzung.

Inhalt	Seite
94: Integration von vier Testboxen in der Außenwand zur Un-	135
tersuchung von – neben Stroh – vier weiterer Dämmaterialien	
im realen Einsatz. Somit können für die gleichen Einflusspa-	
rameter Aussagen über den Wärmestrom durch die Wand	
und die Feuchte- und Temperaturverläufe der unterschiedlichen	
Dämmstoffe gemacht werden.	
95: Die Belüftungsebene zwischen der wärmegedämmten Decke und	71
dem Dach hat zum einen wärmedämmtechnische Gründe und zum	
anderen erlaubt diese Konstruktion große Dachüberstände. Dies ist	
sowohl für die sommerliche Beschattung als auch für den konstruk-	
tiven Holzschutz wesentlich.	
96: Die unterlüftete Bodenkonstruktion unterstützt den Abfluß et-	75
waiger sich unter der Bodenplatte bildender Kaltluft.	10
97: Zusammenfassung technischer Kennwerte von Strohballen	16
(Wärmeleitfähigkeit, Diffusionswiderstand, Brennbarkeit, Dichte,	
spez. Wärmekapazität)	
98: Auflistung der im S-House realisierten Innovationen (Beschrei-	18
bung des Entwicklungsbedarfs, Bezugnahme auf Haus der Zukunft	10
(HdZ)-Vorprojekte)	
99: Strohballenbauten als Möglichkeit, rasch kostengünstigen Wohn-	24
raum zu schaffen: In den USA wurden Strohballengebäude für sozial	21
Bedürftige entwickelt und umgesetzt. Diese können in relativ kurzer	
Zeit mit hohem Selbstbauanteil errichtet werden. Die Gebäude sind	
als lasttragende, lehmverputzte Strohballenbauten konzipiert. Ein	
generell sehr interessanter Ansatz, der auch eine rasche und quali-	
tativ hochwertige Erstellung von Unterkünften in diversen Krisen-	
gebieten ermöglichen kann.	2 =
100: Die Schalldämmfähigkeit von Strohballen liegt über der von	27
herkömmlichen Dämmstoffen auf mineralischer oder fossiler Basis.	
Dies ergaben technische Überprüfungen des eingesetzten Strohbal-	
lenwandaufbaus.	
101: Ein neuartiges Biopolymer-Befestigungselement (sog.	32
TREEPLAST-Schraube) wurde im Zuge des Projekts "S-	
House" entwickelt. Diese ermöglicht die Herstellung weitgehend	
wärmebrückenfreier Wandaufbauten.	
102: Die TREEPLAST-Schraube wird im S-House für die Montage	63
der Lattung der hinterlüfteten Holzfassade direkt in den Strohballen	
eingesetzt (Einschrauben in den Ballen).	
103: Ausführung des Dachs als freistehendes Membrandach, um die	34
Ziele Demontierbarkeit und Rezyklierbarkeit, ressourcensparende	
Dachkonstruktion, Entkoppelung von Witterungsschutz und	
Wärmedämmung, wärmebrückenfreier Aufbau der Gebäudehülle	
erreichen zu können.	

Tab. 6: Innovationen im Projekt "S-House". – Fortsetzung.

Inhalt	Seite
104: Verschiedene Varianten einer Membrandachkonstruktion wurden mit Hilfe einer Nutzwertanalyse bewertet. Die Nutzwertanalyse umfaßt ökologische, ökonomische und technische Bewertungskrite-	36
rien. Die Entscheidung fiel auf die Variante "Kautschukmembran auf Holzkonstruktion".	
105: Das Membrandach besteht aus einer Kautschukplane mit einer Stärke von 1,3 mm, die auf einer Holzkonstruktion aufliegt. Diese bietet genügend Schutz gegen Nässe und Durchwurzelung. Die begrünte Dachoberfläche schützt die Kautschukfolie vor UV-Strahlung.	88
106: Verschiedene Konstruktionsvarianten für eine passivhaustaugliche Strohballen-Holz-Gebäudehülle wurden von einem Expertenteam bewertet. Von sieben Varianten wurden "Tragende Wandscheibe (Kreuzlagenholz (KLH))" und "Skelettbau" am besten beurteilt. Entscheidung für "Tragende Wandscheibe (KLH)."	39
107: Punktfundamente: Innovative Lösung, die Verbrauch an Beton und anderen mineralischen Ressourcen gegenüber herkömmlichen Fundamenten um ein Vielfaches reduziert.	60
108: Holzdübel für Bretterbefestigung: Die Fassadenbretter (sägeraue Fichtenbretter) werden an der Längslattung mittels Leim und Holzdübeln fixiert. Damit kommt der gesamte Wandaufbau ohne metallische Verbindungselemente aus. Vgl. mit, S. 31, Z. 207.	64
109: Holzdübel für Strohballenbefestigung: Fixierung der Strohballen mit Holzdübeln und Hanfschnüren. Die Holzdübel werden mit lösungsmittel- und formaldehydfreiem Klebstoff in den KLH-Massivholzplatten fixiert, welche wiederum Hanfschnüre verankern.	72
110: Direktverputz der Strohballen mit Lehm. Gewinnen des Lehms direkt vor Ort. Maschinelle Aufbringung des Lehmputzes. Lüftung	66
111: Planungswert von mindestens 4°C beim Eintritt der Frischluft in den Wärmetauscher aus dem Erdwärmetauscher bei kalten Außentemperaturen	47
112: Variantenvergleich der Luftbeheizung: Sowohl direkte Beheizung der Luft im Lüftungssystem über heißen Luftstrom (Luft-Luft-Wärmetauscher) als auch Wärmeübertragung mittels Wassertaschen miteinander verglichen. Resultat: Variante der direkten Luftbeheizung einfacher (daher im Projekt über Speicherofen realisiert)	51
113: Konzept Zumischung von Heißluft in Abluft: Temperatur der im Speicherofen erhitzten Heißluft, die in den Abluftkanal gemischt wird, kann bis zu 80°C erreichen.	47

Tab. 6: Innovationen im Projekt "S-House". – Fortsetzung.

Inhalt	Seite
114: Auslegung der Luftvolumenströme: Zugrundegelegt wurden Nichtraucher und ein Luftbedarf von 25m³/h/Person (statt sonst häufig 30m³/Person/h). Es wurden aber viele ökologische Baustoffe verwendet (→ geringere Emissionen) Resultierende mittl. Luftwechselzahl: ca. 1,0-fach	46
115: Höhe des Luftvolumenstroms wird in Abhängigkeit von $\rm CO_2$ -Konzentration bzw. Luftqualitätsindikator VOC gesteuert über Drehzahlregelung des Zu- und Abluftventilators ($\rm CO_2$ -Fühler bzw. Luftqualitätsfühler (VOC) in einem Referenzraum).	47
116: Beschreibung eines Regelungskonzeptes der Lüftungsanlage für die zwei Modi a) nur Lüftung b) Lüftung und Heizung. Einzelraumregelung (Referenzraum).	47
117: Planungskriterium Recycelfähigkeit der Lüftungsanlage: Recycelfähigkeit aller eingesetzten Komponenten. Daraus ergab sich die Entwicklung von Luftkanälen aus Holz (Zirbenholz). Diese Holzart gibt ätherische Substanzen ab, die zum einen bakterizid wirken und zum anderen das Wohlbefinden der Nutzer erhöhen. Kabeltrassen für Elektroleitungen ebenfalls aus Holz.	129
118: Für den Wärmetauscher der kontrollierten Lüftung wird ein Wärmerückgewinnungsgrad von 90% angegeben (Tab. 3), bzw. von bis zu 97% (S. 97)	25
119: Nachtlüftung im Sommer über raumhohe (\rightarrow erhöhte Lüftungswirkung bei gleicher Wandöffnungsfläche) Fenster (jeweils an Ost- und Westwand \rightarrow Querlüftung).	85
120: Bypass, um den Erdreichwärmetauscher umgehen zu können (Erdreichwärmetauscher zweisträngig (pro Strang 35m), im Sandbett verlegt, aus Polyethylen,).	45
121: Zulufttemperatur im Heizfall max. 10°C über der Raumtemperatur	46
122: Messung der Luftkeimzahlen im Stroh (Dämmmaterial der Außenwand). Heiztechnik	147
123: Heizung und Kühlung ausschließlich mit Frischluft: Keine Wärmeabgabeflächen (vgl. hingegen mit , S. 32, Z. 222, wo trotz Erreichen des Passivhaus-Standards bewußt Heiz- und vor allem Kühlflächen vorgesehen werden.)	95
124: Raumluftunabhängiger Stückholz-Speicherofen mit Sichtfenster auf Flamme, 2,5-5kW (Füllung ca. 5kg Holz). Beschreibung der Regelung im Zusammenspiel mit der Lüftungsanlage auf Seite 54. Verbrennungsluft des Ofens vollkommen von der Raumluft getrennt und beeinflußt das Lüftungssystem nicht.	51
125: Errechneter Jahresheizwärmebedarf von ca. 2.400 kWh/a für ein freistehendes Bürogebäude.	46

Tab. 6: Innovationen im Projekt "S-House". – Fortsetzung.

Inhalt	Seite
Solar	
126: Solare Brauchwarmwasserbereitung mit 1500 Liter-	45
Pufferspeicher und 10m ² Kollektorfläche	
Ökologie	
127: $\ddot{O}kologischer\ Vergleich\ "Strohballenwand \leftrightarrow\ konventioneller$	3
Wandaufbau": Der ökologische Fußabdruck (gemessen nach der	
Sustainable Process Index (SPI)-Methode) beträgt für die Strohbal-	
lenwand etwa ein Zehntel dessen einer konventionellen Wand.	
Sonstiges	
128: Guter Kurzfilm (ca. 15 Min.) über Planung und Errichtung	-7
des Hauses. Der Film wird zumindest bei Besuch einer Exkursion	
des Hauses gezeigt (Kosten: ca. 10,-€/Person). Exkursionen meist	
nur an ausgewählten Tagen möglich oder nach Vereinbarung bei	
Gruppen ab 20 Personen.	
129: Getrennte Verbrauchserfassung für einzelne interessante elek-	142
trische Verbraucher über entsprechende Subzähler, darunter die	
Lüftungsanlage.	
130: Kabeltrassen für Elektroleitungen aus Holz. Direkt neben den	43
ebenfalls hölzernen Luftleitungen (\rightarrow S. 20, Z. 117) geführt.	

Tab. 7: Begleituntersuchungen und Messungen im Projekt "S-House"

Inhalt	Seite
131: Testboxen in Außenwand: Mit Hilfe von Testboxen werden im	16
S-House bauphysikalische Parameter (Temperatur, Wärmestrom,	
Feuchte) für Wandaufbauten mit verschiedenen Testdämmstoffe	
(Flachs, Zellulose, Kork und Hanf) gemessen. Die Testboxen sind an	
der Nordseite des Gebäudes eingebaut, sodass die gleichen Umge-	
bungsbedingungen herrschen, die auch für die Strohwand gelten.	
132: Bauphysikalische Integration von Stroh in die Außen-	26
wand: Bei sehr feuchten Außenbedingungen kann es zu hohen	
Feuchtegehalten der äußeren Dämmschicht kommen. Eine damit	
einhergehende Durchfeuchtung des Baustoffes mindert dessen	
Wärmedurchlasswiderstand und beeinträchtigt die Dauerhaftigkeit	
des Dämmmaterials und der Konstruktion. Dem entgegen wirkt	
bei dem betrachteten Wandaufbau die diffusionsoffene Konstruk-	
tion, wodurch Kondensation innerhalb der Wand verhindert wer-	
den soll. Bei Stroh ist zusätzlich an der Außenwand eine Lehm-	
schicht als außenliegender Verputz, von der noch weiter außen	
liegenden Holzverschalung geschützt, aufgetragen, die zum einen	
als Windschutz der Strohdämmschicht, bzw. als Brandschutz di-	
ent und zum anderen auf Grund der hohen Sorptionsfähigkeit von	
Lehm Feuchtigkeitsspitzen kompensiert.	
Tabella umanitis fortsegetat	ı

Tab. 7: Begleituntersuchungen und Messungen im Projekt "S-House" – Fortsetzung.

Inhalt	Seite
133: Während Zellulose, Kork und Flachs einen nahezu konstanten	29
λ -Wert bei Variation der Differenz zwischen Außen- und Innentem-	
peratur beibehalten, steigen die Wärmeleitfähigkeitskoeffizienten	
von Stroh und Hanf mit der Temperaturdifferenz an. Im Falle	
von Hanf hängt dies mit größeren Lufteinschlüssen in der Test-	
box zusammen, was höhere Konvektionsverlusten mit sich bringt.	
Die Regressionsanalyse zeigt auch, dass alle Dämmstoffe leicht	
mit der Temperaturdifferenz erhöhte Wärmeleitfähigkeitswerte	
aufweisen, wobei Kork die Herstellerangaben von λ =0,04 W/mK	
unter speziellen Bedingungen (Temperaturdifferenzen > 10K) na-	
hezu erfüllen kann.	
134: Kondensation an der Außenseite des Bauteil im Herbst möglich	: 37
Die Feuchte der Dämmmaterialien an der Außenseite des Wan-	
daufbaus ändert sich nahezu ohne zeitliche Verzögerung mit der	
Außenfeuchte, wobei eine konstante Differenz zwischen Bauteil-	
feuchte und Außenfeuchte über den Jahresverlauf zu erkennen ist.	
An kritischen, sehr feuchten Tagen im Herbst und Winter liegt	
die relative Feuchte an der Außenseite der Testboxen über 95%,	
wodurch es zu Kondensationserscheinungen kommen kann.	
135: Die relative Feuchte an der Innenseite der Testboxen	38
unterliegt im Jahresverlauf Schwankungen zwischen 30% und	
55%. Zusammenfassend kann man festhalten, dass bei der im	
Bericht beschriebenen Ausführung des Wandaufbaus mit Stroh	
als Dämmmaterial es nur an vereinzelten Tagen zu Konden-	
sation kommen kann und diese am wahrscheinlichsten an der	
Dämmstoffaußenseite auftritt.	
136: Die Trendlinie für den absoluten Feuchtegehalt der Luft verläuft	38
in der Strohdämmung flacher als in der Außenluft, was auf ein	
gewisses Austrocknungspotenzial in der Konstruktion schließen	
läßt. Der Feuchtegehalt der Dämmung im Boden dagegen ist offen-	
sichtlich stärkerer Befeuchtung ausgesetzt, was auch eine zeitweise	
höhere Durchfeuchtung verursacht.	

Tab. 7: Begleituntersuchungen und Messungen im Projekt "S-House" – Fortsetzung.

1ab. 1. Deglerediters definition and websungen in Frojekt "5 House	i or oscozung.
Inhalt	Seite
137: Gemessene Wärmeleitfähigkeiten über Herstellerangaben: Für die in den Testboxen eingebauten Dämmstoffe wurden Wärmeleitfähigkeiten ermittelt. Am besten schneidet Kork ab (0,05 W/mK), gefolgt von Zellulose (0,07 W/mK), Flachs (0,07 W/mK) und Stroh (0,1 W/mK). Alle in der Messung ermittelten Wärmeleitfähigkeiten liegen über den Herstellerangaben. Insbesondere der Wert für Stroh liegt deutlich über den bei dem Prüfverfahren nach ÖNORM ermittelten Wert. Es wird vermutet, dass dieser Wert für Stroh durch größere Lufteinschlüsse aufgrund zu geringer Dichte des Dämmstoffes an der Messstelle zustande kommt. Die Vermeidung von Hohlräumen (insb. bei Anschlüssen Wand-Decke, Wand-Boden) bei der Ausführung der Dämmung ist also von großer Bedeutung.	40
138: Die Temperaturen bewegen sich größtenteils innerhalb des Behaglichkeitsbereiches trotz teilweise hoher innerer Lasten (Personenzahl).	42
139: Innenraumbehaglichkeit in bezug auf Temperatur und Feuchte: Temperatur und Feuchte bewegen sich innerhalb des Behaglichkeitsfeldes, allerdings ist eine Tendenz in Richtung zu warmer und zu trockener Luft erkennbar. Bei ungünstigen Außenbedingungen (niedrige Außentemperatur, niedrige rel. Luftfeuchte der Außenluft) und bei gleichzeitig hohem Luftwechsel kann es zu sehr niedrigen, relativen Raumluftfeuchten kommen. Im Falle des S- Houses sollte der Luftwechsel, vor allem bei niedrigen Außentemperaturen und kleineren Belegungszahlen niedriger gehalten werden.	44
140: Aus den Auswertungen der Messungen ist sehr deutlich zu erkennen, dass der CO ₂ - Gehalt in der Raumluft bei Erhöhung des Luftwechsels rasch abnimmt.	47
141: Im Stroh beim Einbau vorhandener Schimmelpilz wurde abgebaut: In dem unbehandelten Stroh, das als Dämmmaterial am S-House verwendet wurde, kam es im Zeitraum 2004 bis 2007 zu einer erheblichen Abnahme der lebensfähigen Schimmelpilze, die natürlicherweise im Stroh vorhanden sind. Es konnte im Laufe der Messungen kein Hinweis darauf gefunden werden, dass es im Innenraum des Gebäudes zu einem durch das Dämmmaterial bedingten Anstieg der Schimmelpilzsporen kommt. Aus diesem Grunde kann das verwendete Dämmmaterial aus hygienischer Sicht als unbedenklich eingestuft werden. Diese Beurteilung gilt vorbehaltlich eines eintretenden Wasserschadens, da eine Durchnässung des Dämmmaterials zu einem erneuten Anstieg der Schimmelpilze führen könnte.	73

3.5 Pr. "SOL4"

Tab. 8: Hervorzuhebendes im Projekt "Sol4 Büro-und Seminarzentrum Eichkogel"

Inhalt	Seite
Baukonstruktionen / Sanierung	
142: Die Mineralschaumplattenfassade hat sich gerade im Bereich	319
von 30cm Dämmstärke als sehr aufwendig erwiesen.	
143: Gebäudethermografie erstellt.	236
144: Heizenergiebilanz für ges. Baukörper mit Gewinnen und Ver-	14
lusten.	
145: Anwendung des PHPP auf ein Bürogebäude zur Bewertung	19
und Optimierung eines Passivhauses in Bezug auf Beheizbarkeit	
und zu erreichende Energiekennzahl, letztendlich aber dynamische	
Gebäudesimulation mit TRNSYS 15.0 durchgeführt	
Lüftung	
146: Ökologie von Lüftungskomponenten: Unter anderem bei	319
Lüftungsrohrschalldämpfern Polyvinylchlorid (PVC)-haltige Pro-	
dukte gefunden und durch problemlose getauscht. Es sollte hier ein	
großes Augenmerk auf sogenannte "Standardprodukte" gelegt wer-	
den, da sich hier die Gefahr PVC-haltige zu erhalten als wesentlich	
höher herausgestellt hat, als bei "Nischenprodukten", die einfach	
wesentlich genauer getestet werden.	
147: Sorgfältiges Chemikalienmanagement: Aufwand von vier Stun-	30
den für die Überprüfung der Halogenfreiheit der vom Auftrag-	
nehmer für die Elektrikerarbeiten angegebenen Produkte.	
148: Kühlkonzept: Betonkernaktivierung + Zuluft: Eine reine, freie	23
Nachtlüftung reicht in den meisten Zonen nicht aus, um maxi-	
male Temperaturen von 26 bis 27 Grad C nicht zu überschreiten.	
Einsatz von Betonkernaktivierung (BKA) macht mechanische	
Nachtlüftung (über Lüftungsanlage → Bürohaus) verzichtbar	
(→ relevante Stromeinsparung). Ausnahme Atrium: Kombination	
Schwerkraftentlüftung mit Zu-und Abluftklappen (je 2,5m²) und	
teilweise Belegung mit BKA erforderlich.	
149: Einsatz eines Rotationswärmetauschers und zweier Gegen-	15
stromplattenwärmetauscher im gleichen (Büro)Gebäude.	-
Heiztechnik	
150: Betonkernaktivierung in den Decken des Gebäudes (Direct	13
Cooling)	-
Kosten	
151: Übersichtstabelle zu den Investitionskosten der Haustechnik	25
(ohne Berücksichtigung von Fördergeldern). Inkl. Photovoltaikan-	20
lage 164,- €/m² Nettonutzfläche	
Ökoloaie	

Tab. 8: Hervorzuhebendes im Projekt "Sol4 Büro-und Seminarzentrum Eichkogel" – Fortsetzung.

Inhalt	Seite
152: Als erstaunlich einfach umsetzbar haben sich im Bereich der	319
Elektroverkabelung die Anforderungen PVC-und Halogenfreiheit	
herausgestellt.	
153: Luftschadstoffmessung durchgeführt (vgl. GMZ Ludesch)	13
Solar	_
154: Stromertrag aus der Photovoltaikanlage über das Kalenderjahr	14
deckt in etwa den Heizenergiebedarf	

3.6 Pr. "Altbausanierung mit PH-Praxis"

Tab. 9: Hervorzuhebendes im Projekt "Strategien zur Marktaufbereitung für die Implementierung von Passivhauskomponenten in der Althaussanierung"

Inhalt	Seite
Lüftung	
155: Beispiel für einen Fall, in dem der Mindestluftwechsel allein	112
mit den üblichen Zuluft- oder Abluft- Auslegungsbedingungen nicht	
erreicht wird.	
156: Sanierung Geschosswohnbau Hannover: Semizentrales	82
Lüftungskonzept, aber eine eigene Lüftungsanlage für große	
Dachgeschoßwohnung	
157: Sanierung Geschosswohnbau Hannover: Beschreibung einer	81
Sanierung mit einem n50-Wert von 7 vor der Sanierung. Z. B. neue	
Fußböden auf Trockenestrichplatten verlegt und mit Folien luftdicht	
an die Wände angeschlossen.	
158: Sanierung Geschosswohnbau Hannover: Nur im Erdgeschoß	82
sind zusätzliche statische Heizflächen vorgesehen	
159: Vergleich verschiedener Lüftungskonzepte in der Althaus-	50
sanierung (basierend auf dem entsprechenden Passivhausinstitut in	
Darmstadt (PHI)-Band)	
160: Sanierung Jean-Paul-Platz, Nürnberg Kostenangaben zur	85
Nachrüstung einer Lüftungsanlage: Planungskosten 12% der	
Gesamtkosten der Lüftungsanlage. Kosten von ca. 500 € pro	
Wohneinheit für die abgehängte Decke im Flur. Insgesamt spezi-	
fische Kosten für die Lüftung (inkl. Planung) auf netto 44 €/m².	
161: Sanierung Jean-Paul-Platz, Nürnberg: Einsatz dezentraler,	84
Passivhaus-zertifizierter Lüftungsgeräte mit Wärmerückgewinnung	
in jeder Wohneinheit (jeweils im Abstellraum an der Außenwand	
angebracht) nach Abwägung von Vor- und Nachteilen verschieden-	
er Varianten	

Tab. 9: Hervorzuhebendes im Projekt "Strategien zur Marktaufbereitung für die Implementierung von Passivhauskomponenten in der Althaussanierung" – Fortsetzung.

piementierung von Passivnauskomponenten in der Aitnaussanierung	Fortsetzung.
Inhalt	Seite
162: Luftvolumenstrom von 20m³ Luft pro Person und Stunde	40
als ausreichend empfohlen, um den Pettenkoferwert von 1000 ppm	
einzuhalten. Empfehlung für die Übergangsperiode: Anhebung auf	
etwa 30m³/h je Person, um die Feuchteabfuhr zu gewährleisten.	100
163: "Splitsystem" für Wärmerückgewinnung: Die Wärme in der	120
Fortluft im Dach wird über ein mit Wasser/Glykolgemisch gefülltes	
Rohrleitungssystem in den Keller gebracht und dort der Zuluft mit	
einem Heizregister zugeführt.	40
164: Übersicht über Möglichkeiten der räumlichen Anordnung der	48
Technik für Lüftungsgeräte in der Sanierung.	4.1
165: Angegebene Maximaltemperatur der von der Frischluft	41
berührten Wärmetauscherflächen: 55 °C	100
166: Dachbodenausbau Krems: Beheizung der Wohnungen erfolgt	102
mit kontrollierten Wohnraumbe- und Entlüftungen mit Luft-Luft	
Wärmepumpen und Gegenstromwärmetauschern	
167: Sanierung "Goldenes Kreuz", Krems: Frischluft durch Beton-	100
rohre geführt	
168: Sanierung "Goldenes Kreuz", Krems: Führung der Frischluft	100
durch ein in der Seitenfassade angeordnetes Zuluftgitter durch einen	
tief gelegenen Gewölbekeller. Im Winter wird dadurch die Luft	
vorgewärmt - im Sommer gekühlt.	
169: Erörterung, warum in einem Sanierungsfall eine zentrale	111
Abluftanlage die günstigste Variante war (Varianten: zentrale	
Zu-/Abluftanlage mit Wärmerückgewinnung, reine Abluftanlage,	
raumweise Wärmerückgewinnungsgeräte in den Außenwänden).	
Auflistung der Nachteile von raumweisen Zu-/Abluftgeräten mit	
Wärmerückgewinnung.	
170: Sanierung Jean-Paul-Platz, Nürnberg: Tabellarischer Vergleich	88
der Varianten "Drei Einzelraumgeräte/Wohneinheit" versus "Ein	
Zentralgerät/Wohneinheit" inkl. Wirtschaftlichkeitsvergleich. Zwei	
der drei Einzelraumgeräte in bewußt gehaltener Disbalance.	
171: Sanierung Jean-Paul-Platz, Nürnberg: Übersichtstabelle mit	86
den wesentlichen Angaben zur Berechnung auf die Energiebezugs-	
fläche bezogener Lüftungswärmeverluste	0.5
172: Sanierung Jean-Paul-Platz, Nürnberg: Tabelle zu den projek-	86
tierten Ab- und Zuluftvolumenströmen pro Wohneinheit der Woh-	
nungslüftungsanlage mit Wärmerückgewinnung	
173: Sanierung Wiener Gründerzeithaus, pos Arch - Lüftungsanlage:	96
4 "Regelebenen" (Stufen). Luftmengen zwischen "Wohnraum und	
Zimmern" verschiebbar.	ı

Tab. 9: Hervorzuhebendes im Projekt "Strategien zur Marktaufbereitung für die Implementierung von Passivhauskomponenten in der Althaussanierung" – Fortsetzung.

Inhalt	Seite
174: Sanierung Wiener Gründerzeithaus, pos Arch - Lüftung: Die	95
Luft wird über die Hohlräume der Spannbetondielen (neu eingeset-	
zte Fertigteildecken) geführt und dabei zusätzlich nachgewärmt.	
175: Sanierung Schlossmuseum Linz: Einsatz von "Temperier-	122
rohren" zur thermischen Trockenlegung im Kellerbereich. Bei der	
Temperierung wird ganzjährig Wärme an das Mauerwerk abgeben,	
um den Sättigungsdampfdruck zu erhöhen und das Aufsteigen nicht	
drückender Erdreichfeuchte zu vermeiden.	
176: Sanierung Schloß Schönbrunn - Kaiserhöfe: Vorgaben	125
waren eine schadenspräventive Klimatisierung mit definierter	
Luftwechselzahl mit hohem Komfort für die Nutzer (Quelllüftung	
ohne Zugerscheinungen) und möglichst geringen Betriebskosten.	
Zusätzliche Zuluftanlagen mit Energiebrunnen sorgen mit den in	
Kaminen eingebauten Abluftventilatoren für einen definierten, ein-	
fachen Luftwechsel (n = 1/h), um in den Schauräumen möglichst	
träge Klimaschwankungen ohne Temperatur- und Feuchtespitzen	
zu erhalten. Als Erdwärmetauscher wurde ein alter Kanal aus	
Ziegeln mit einer Länge von rund 200m reaktiviert.	
177: Sanierung Kindergarten und Schule in Grafenschlag :	118
Sanierung der Südfassade durch vorgehängte Doppelfassade aus	
Wärmeschutzglas, Ansaugung der Frischluft aus diesem Bereich	
des Fassadenzwischenraums. Die Frischluft wird dorthin über einen	
Erdwärmetauscher angesaugt. Im Doppelfassaden-Zwischenraum	
wird im Winter eine Durchschnittstemperatur von 10°C erwartet.	
Alternativ wird die Frischluft aus dem Schulhof angesaugt. Auf-	
grund von Budgetnot wurde das erste Halbjahr ohne Beschat-	
tung im Wintergarten verlebt. Es zeigten sich extreme Temper-	
aturen in den Klassen! Nach Nachrüstung von Beschattungen be-	
standen weiterhin Überhitzungsprobleme (verringert), vor allem im	
Mai. Da durch den Verzicht auf eine Öffenbarkeit (Kosten und	
Optik) der Fassade die mechanische Lüftung (10facher Luftwech-	
sel) nur begrenzt Wirkung zeigte, wurden Regelungskomponenten	
zur Nachtlüftung der Klassen über den Erdwärmetauscher und das	
Stiegenhaus nachgerüstet.	
178: Sanierung Kindergarten und Schule in Grafenschlag :: Die Zu-	120
luft wird im Winter im Keller des Stiegenhauses eingebracht. Die	
Nacherwärmung erfolgt über die im Gang situierten Heizkörper!	
Die Abluft wird jeweils in den Klassen im minimalen Dachraum	
über Abluftkanäle mit Volumenstromregler (nur 0 und 1 Funktion)	
abgesaugt. Die Nachströmung aus dem Gangbereich erfolgt über	
schallgedämmte Überströmelemente.	

Tab. 9: Hervorzuhebendes im Projekt "Strategien zur Marktaufbereitung für die Implementierung von Passivhauskomponenten in der Althaussanierung" – Fortsetzung.

Inhalt	Seite
179: Sanierung Schloß Schönbrunn - Kaiserhöfe: Abwärmenutzung	125
aus Trafo, Kühlanlagen. Nutzung eines Energiebrunnens und von Solar-Kollektoren	
180: Sanierung Museum Carolino-Augusteum, Salzburg: Die Zuluft	127
wird raumweise im Bodenbereich über einen verdeckten Schlitz	
eingebracht. Die Abluft wird im Sturzbereich der meist historischen	
Türgesimse und Rahmen abgesaugt. Im historischen Bereich wer-	
den wie in der Sanierung Schlossmuseum Linz warme Wände einge-	
setzt. Zur Luftführung werden hauptsächlich Kamine benutzt.	
181: Sanierung Schlossmuseum Linz: Aus Kostengründen und we-	123
gen der höheren Betriebssicherheit wurde auf eine Entfeuchtung der	
Zuluft verzichtet. Das Überschreiten der zulässigen Höchstgrenze	
der relativen Feuchtigkeit im Sommer wird durch das Unterbinden	
von Eindringen zu feuchter Luft in das Museum verhindert: Bei	
zu feuchter Außenluft wird die Lüftungsrate zuerst minimiert und	
bei weiterem Ansteigen der Feuchte abgeschaltet. Bei trockeneren	
Zuständen der Frischluft wird die Lüftung wieder aktiviert. Bei	
dennoch zu hohen Werten der relativen Feuchte kann mit konser-	
vatorischem Heizen entgegen gesteuert werden, d.h. durch leichtes	
Anheben der Raumtemperatur. Die Aktivierung der Abluftlüfter	
wird durch ein intelligentes Bussystem welches die absolute Außen-	
luftfeuchte und die Raumluftfeuchtigkeit vergleicht, freigegeben.	
Entsprechend der Anzahl aktivierter Lüfter wird die Zuluft stufig	
geschaltet. Die Führungsgröße ist immer die aktuelle Raumfeuchte!	
Im Winter geschieht dies mit umgekehrten Vorzeichen und der Min-	
imierung der Raumtemperatur. Bei trockenen Wintern werden mo-	
bile dezentrale Luftbefeuchter eingesetzt.	
182: Sanierung Schlossmuseum Linz: Die Frischluft wird über	123
einen bei den Ausgrabungen für den unterirdischen Zubau gefun-	
den "Römischen Brunnen" geleitet. Dieser dient zur Glättung der	
Außenluftzustände.	
183: Sanierung Schlossmuseum Linz: Die Zuluft wird zentral in den	123
Gängen parallel mit dem Aufzugsschacht in die jeweiligen Geschosse	
eingebracht. Die Führung der Abluft erfolgt dezentral über in den	
Fensterlaibungen installierte schallgedämmte Walzenlüfter, welche	
die Fortluft in den Fensterzwischenraum einbringen. Der äußere	
Flügel der historischen Kastenfenster wird minimal geöffnet um die	
Fortluft entweichen zulassen. Im Sommer kann damit gleichzeit-	
ig die an der Verschattung entstehende Wärme abgelüftet werden.	
Der innere Flügel wird abgedichtet.	
184: Diskussion der Variante, Lüftungsleitungen innerhalb einer	113
Dämmschicht auf der obersten Geschossdecke zu verlegen.	

Tab. 9: Hervorzuhebendes im Projekt "Strategien zur Marktaufbereitung für die Implementierung von Passivhauskomponenten in der Althaussanierung" – Fortsetzung.

Seite
113
113
110
23
116
117
11,
112
112
115
110
115
110
106
100
117
111
43
10
110
110

Tab. 9: Hervorzuhebendes im Projekt "Strategien zur Marktaufbereitung für die Implementierung von Passivhauskomponenten in der Althaussanierung" – Fortsetzung.

Inhalt	Seite
197: Listen (theoretischer) Alternativen zum Erdwärmetauscher	11
bei Altbauten: lokale Tiefenbohrungen, Betonkernaktivierung von	
Zubauten wie Garagen, Systeme zur Außenluft-Vorerwärmung ohne	
elektrischen Strom	
Baukonstruktionen / Sanierung	
198: Beplankung mit Phase Change Material (PCM)-Platten am	115
Dachboden	
199: Stellungnahme der Fa. Internorm zum Thema, ob in der	174
Sanierung für hohe Sanierungsqualität im sozialen Wohnbau im-	
mer PHI-zertifizierte Fenster zu Einsatz kommen müssen, um die	
Anforderung an höhere Behaglichkeit zu erfüllen.	
200: Ausführungen zu passivhaus-geeigneten Dachflächenfenstern	38
Kosten	
201: Individuelle Abrechnung: Ein Feedback für BewohnerInnen in	134
Form von individueller Heizkostenabrechnung und eventuell sogar	
Soll-Istwertvergleichen des Energieverbrauchs wird empfohlen.	
Sonstiges	
202: Netzfreischaltung für alle Schlafräume, sowie geschirmte Kabel	96
im gesamten Aufenthaltsbereich	

Pr. "Christophorushaus" 3.7

Tab. 10: Hervorzuhebendes im Projekt "Christophorushaus"

${f Seite}$
21
22
13

Tab. 10: Hervorzuhebendes im Projekt "Christophorushaus" – Fortsetzung.

Inhalt	Seite
206: Ökologie der Baustoffe innerhalb des Holzsegments:	21
Rundstützen aus nach Festigkeit sortiertem Rundholz statt teuren	
und primärenergieintensiveren Brettschichtholzes	
207: Reduktion des Stahleinsatzes: Stahlfreie Deckenauflager	21
zur Reduktion grauer Energie und andernfalls erforderlich-	
er gewerkübergreifender Montage. Leichteres Erreichen von	
Wärmebrückenfreiheit.	
208: Mit Zellulose gedämmtes Dach.	17
209: Beschreibung von Optimierungsschritten in der Planung des	23
Holzbaus - v. a. in bezug auf sommerliche Überwärmung: Gezielte	
Einbringung von Speichermassen (ca. 100 Tonnen über Estriche,	
massive Innenwände und Stiegenhaus) Gezielte Reduktion des	
Glasflächenanteils der Atriumverglasung (Reduktion um ca. 50%)	
sowie Änderung der Orientierung. Gezielter Einsatz von Sonnen-	
schutzverglasungen vs. Wärmeschutzverglasungen (Bandbreite der	
g-Werte zwischen 0,3 und 0,6). Optimierte Beleuchtungsstrategien	
(Tageslichtnutzung über Oberlichten und energiesparende Beleuch-	
tungskörper - "Einbaudownlights"; Konstantregelung der Beleuch-	
tungsstärke am Arbeitsplatz durch Lichtsensor). Berücksichtigung	
eines freien Nachtlüftungskonzeptes.	
Lüftung	
210: Luftvorwärmung/-kühlung über Erdregister: Erdkollektor aus	27
Polyethylen, DN 500, von nur 25 m Länge gekoppelt mit ein-	
er "Erdsondenauskopplung" (Verwendung eines Tiefensondenkreis-	
es zur Vorwärmung/-kühlung der Frischluft). Eine zusätzliche	
Nachkühlung der Luft im Sommer ist im Normalfall nicht mehr	
erforderlich, da durch das Vorkühlregister die Zuluft bereits auf	
$+22^{\circ}$ C vorgekühlt wird (\rightarrow siehe Z. 211).	
211: Kühlleistung des Erdreichwärmetauschers im Sommerbetrieb:	32
Lufteintritt vor Luftvorwärmregister: 32°C/40% r.F., Luftaustritt	~ _
nach Luftvorwärmregister: 22°C/73 %r.F.	
212: Luftnachheizung über Heizwasser aus der Wärmepumpe	33
(erforderliche Vorlauftemperatur von 40°C im Heizlastfall für	33
Büroräume)	
213: Einsatz von Rotationswärmetauschern	27
214: Luftmengenregelung gemäß gemessener Luftqualität: Die	33
	აა
Anlage wurde so ausgeführt, dass die Luftmenge in den	
Seminarräumen entsprechend der tatsächlichen Personenbele-	
gung verändert werden kann. Die Luftqualität wird mittels	
Luftqualitätsfühlern erfasst und mit Hilfe frequenzgeregelter	
LUTTOPMOTORON ANGONAGET	

Lüftermotoren angepasst.

Tabelle umseitig fortgesetzt ...

Tab. 10: Hervorzuhebendes im Projekt "Christophorushaus" – Fortsetzung.

Inhalt	Seite
215: Die WCs werden über über dezentrale Abluftventilatoren	28
entlüftet. Die Zuluftnachströmung erfolgt über Türgitter in Bo-	
dennähe \rightarrow keine balancierte Lüftungsanlage.	
216: Abschätzung des Lüftungswärmeverlustes über die Abluftanlage	34
des WCs: (läuft nicht über die Wärmerückgewinnung) Wird von	
einer tatsächlichen Laufzeit von 10 min je Stunde ausgegangen,	
dann ergibt sich eine umgerechnete Luftmenge von 51 m ³ /h, welche	
ohne Wärmerückgewinnung ins Freie geblasen wird.	
217: Im Holzbau einen n ₅₀ -Wert von 0,4 erreicht	27
218: Tiefensondendimensionierung: Hervorhebung der Bedeutung	25
der Dimensionierung der Tiefensonden, wenn direct cooling	
ermöglicht werden soll. Zum Einsatz kamen 8x100 m lange Duplex-	
Erdsonden.	
219: Zonierung der Lüftung in Büroräume "Zone Nord" und "Zone	33
Süd,, sowie in Seminarräume	
220: Planung Lüftungssystem: maximal zulässige Raumluft-	31
geschwindigkeit 0,2 m/s	
221: Dämmung für Außenluft- und Fortluftkanal mit 30 mm (Miner-	31
alfasermatten) angegeben. Dämmung von Zuluft- und Abluftkanal:	
10 cm. Anm. Autor: Unklar, warum Außenluftkanal nur vergleichsweise schwach	
gedämmt ist.	
10 cm. Anm. Autor: Unklar, warum Außenluftkanal nur vergleichsweise schwach	

Heiztechnik

222: Aufgrund Kühlanforderungen Vorsehen von	27
Wärmeabgabe(entzugs)flächen trotz Erreichung des PH-	
Heizlastkriteriums: Aufgrund des erreichten Passivhausstandards	
beim Heizlastkriterium (spezifische Heizlast $\leq 10 \text{ W/m}^2$) wäre	
für die Wärmeversorgung eine reine Frischluftheizung – also der	
Verzicht auf Wärmeabgabeflächen im Raum – möglich gewesen.	
Da für den Kühlfall einerseits aus Behaglichkeitsgründen die Ab-	
senkung der Zulufttemperaturen begrenzt ist und andererseits das	
"direct-cooling" auch bei Sondenvorlauftemperaturen knapp unter	
den maximalen Raumtemperaturen (26°C) möglich ist, wurden als	
Wärmesenke des Raums wasserdurchströmte Kühlflächen vorge-	
sehen. Außerdem wird durch die Heizflächen die Behaglichkeit in	
den Büroräumen im Heizbetrieb angehoben. Wasserdurchströmte	
Kühlflächen sind je nach Zonenbelastung und konstruktiven	
Rahmenbedingungen als Deckenpaneele bzw. Fußbodenenelemente	
(Aktivierung der Estrichmassen) ausgeführt. Die durchschnittliche	
erzielbare Kühlleistung liegt beim "direct-cooling" in Kombination	
mit Kühldecken etwa bei 25 W/m ² .	

Tab. 10: Hervorzuhebendes im Projekt "Christophorushaus" – Fortsetzung.

Inhalt	Seite
223: Kühlung durch free cooling über Erdsonden: Erwartete	32
Kühlwassertemperaturen aus den Erdsonden von 18°C	
(Kühlwasservorlauf) und 21°C (Kühlwasserrücklauf). Bei außer-	
planmäßig erhöhter Kühllast und daher Einsatz des Umkehrbe-	
triebs der Wärmepumpe Kühlwassertemperaturen von 12°C	
(Vorlauf) und 18°C (Rücklauf) möglich.	
224: Kühlen und Heizen mit der Wärmepumpe: Wärmepumpe ist	29
mit einer Möglichkeit zur Prozessumkehr ausgestattet, sodaß im	
Sommer mit der Anlage eine Kühlwassererzeugung möglich wäre.	
Hierbei wird im Sommer die bei der Kühlwassererzeugung anfall-	
ende Wärme an das Erdreich übertragen. Das System ist allerdings	
so ausgelegt, daß der Umkehrbetrieb der Wärmepumpe nicht er-	
forderlich wird (S. 33).	
225: Kühlenergiebedarf zwischen 4,5 und 10 kWh/m²/a	24
226: Jahresprimärenergiebedarf: 49 kWh/m² Nutzfläche/a für	9
Heizung, Warmwasser, Lüftung, Hilfsstrom und Kühlung (direct	
cooling).	
227: Ausführliche Beschreibung aller technischen Komponenten	28
durch die Planungsfa.	
228: Dynamische Gebäudesimulation: Mehr als 20 Variationsrech-	23
nungen zur sukzessiven Optimierung hinsichtlich Behaglichkeit und	
Energiebedarf mittels dynamischer Gebäudesimulation (Software	
TRNSYS). Darstellung der Wirkungen der Einzelmaßnahmen im	
Optimierungsprozeß als Abfolge von Balken in einem Balkendia-	
gramm. Jeder Balken trennt den jeweiligen Gesamtenergiebedarf	
in seine einzelnen Komponenten auf.	
229: Extremklimadatensätze für thermische Gebäudesimulation: An-	22
wenden zweier unterschiedlicher Extremklimadatensätze für jede	
einzelne Variation des Gebäudekonzepts (Wandaufbauten, Spe-	
ichermassen, Luftwechsel, externe Lasten, interne Lasten, etc.) zur	
Absicherung der Ergebnisse der dynamischen Gebäudesimulation.	
1) Extremklimadaten "Heizen" (1996 war für den Standort das	
kühlste Jahr der letzten Dekade) 2) Extremklimadaten "Kühlen"	
(1994 war für den Standort das heißeste Jahr der letzten Dekade).	
230: Nutzungsprofile: Festlegung von Nutzungsprofilen für die Sim-	22
ulation bis hin zur Annahme von EDV-Nutzungszeiten (die Band-	
breite der Lasten von der konventionellen "Kathodenröhren-EDV-	
Station" mit ca. 230 W/Arbeitsplatz bis zur "Flachbildschirm-	
EDV-Station" mit ca. 140 W/Arbeitsplatz.	
Sonstiges	
231: Monitoring: Meßkurven zum Raumklima im bereits errichteten	50
Passivhaus	
Solar	

Tab. 10: Hervorzuhebendes im Projekt "Christophorushaus" – Fortsetzung.

Inhalt	Seite
232: Photovoltaik: 9,8 kWpeak-Photovoltaik-Anlage davon etwa 3,6	26
kWpeak in der Fassade und etwa 6,2 kWpeak mit 40 Neigung	
233: Solarthermie: 6m ² solarthermische Brauchwasseranlage mit	26
elektrischer Nachheizung. Deckungsanteil: mehr als 70% der	
Brauchwasserwärme.	

3.8 Pr. "Mühlweg"

Tab. 11: Hervorzuhebendes im Projekt "Wohnbau, Holz-Passivhaus" (Mehrgeschossiger geförderter Wohnbau für 70 Wohneinheiten Holzmassivbauweise, Passivhausstandard Mühlweg, 1210 Wien).

Inhalt	Seite
Baukonstruktionen / Sanierung	
234: Passivhaus-Fenster – Problem der Vereinbarkeit der Schallschutzanforderungen der Bauordnung und der	28
wärmetechnischen Qualität marktverfügbarer Fenster: Passivhaus-	
geeignete Fenster in Kombination mit der in Wien erforderlich	
hohen Schallschutzanforderung von resultierend 38 dB wurden	
2005 nicht standardmäßig angeboten	
235: Einsatz von Vakuumdämmung bei Seitenwänden des	28
Hauseingangs- und Windfangsbereiches, um Wohnfläche zu max-	
imieren. Ursprünglich war mehr Fläche an Vakuumdämmung	
geplant, aber Kostendruck zu hoch, außerdem Befürchtungen	
über unbemerkte, schleichende Verschlechterung des Dämmwertes	
durch Vakuumverlust und Unmöglichkeit zur Reparatur (keine	
Zugänglichkeit der Paneele). In den genannten Einsatzbereichen	
Austausch der Paneele leichter möglich.	2 2
236: Liste von Vorteilen der Element-Vorfertigung beim Holzbau	25
237: Ursprünglich geplanter Einsatz von Vakuumdämmung zur	27
Erzielung eines niedrigen Fußbodenaufbaus, um in der vorgegebe-	
nen Bauklasse II die geplante Anzahl an Stockwerken unter-	
bringen zu können. Angedachte Reduktion von rd. 280 mm	
Steinwolle auf 2 x 25 mm Vakuumdämmung + 30 mm	
Trittschalldämmplatte. Dann aber nicht realisiert. Angeführte	
Gründe: Paneele schadensanfällig in der Anlieferung, im Ein-	
bau, im Zuge der Bauführung wie auch vor allem über die Nutzungsdauer. Im Schadensfall Totalversagen des betreffenden	
Bauteils Anm. Autor: laut Herstellerangaben nicht zutreffend; ein Restdämmwert bleibt aufgrund der feinporösen Struktur des Materials erhalten. und außer-	
dem nicht bauordnungsgemäß ausführbar (Schwelle innen - außen	
unzulässig)	
Ulizurassig)	

Tab. 11: Hervorzuhebendes im Projekt "Wohnbau, Holz-Passivhaus" (Mehrgeschossiger geförderter Wohnbau für 70 Wohneinheiten Holzmassivbauweise, Passivhaus-

Inhalt	Seite
238: Wohnungsweise Erfassung des Verbrauchs von Kalt- und Warmwasser	8
239: Passivhaus-Neubau im mehrgeschoßigen Wohnbau: Controlling, Beratung und Auswertung der Projekte angedacht.	32
Lüftung 240: Realisierung einer raumindividuellen Temperaturregelbarkeit unabhängig von Lüftung:: Konzept einer "Bonsai"- Fußbodenheizung wurde wirtschaftlich verglichen mit der Variante "Bonsai"-Heizkörper. Resultat: Wirtschaftlicher Vorteil der Heizkörpervariante.	20
241: 0,2/h als im Rohbau erreichter n ₅₀ -Luftdichtheitswert aller 4 Häuser (Holzbau!)	25
242: Ursprüngliches Konzept sah Erdreichwärmetauscher zur Frischluftvorwärmung vor. Dann aber wegen Kostenreduktion Entfall dieser Variante wie im Pr. "Utendorfgasse". Aus hygienischen Bedenken wäre außerdem seitens der Baubehörde eine (betriebskosten-) aufwendige Spülung und Reinigung des Kollektors in kurzen Intervallen vorgeschrieben worden. Vgl. hingegen mit Pr. "S-House" und Pr. "Christophorushaus", bei denen Erdreichwärmetauscher eingesetzt wurden.	3
243: Lüftungskonzept: 1 zentrales Gerät am Dach pro Haus. (→ bei 4 Häusern insgesamt 4 Geräte). Entspricht der Variante beim Pr., Utendorfgasse". Ursprünglich war ein dezentrales System geplant (hätte 72 Geräten bei der Variante 1 Gerät/Wohnung entsprochen). Umplanung vor allem aufgrund von Kostenreduktion.	20
244: Zusätzliche Schalldämmmaßnahmen im Bereich der Zuluftführung.	3
Heiztechnik 245: Neben Kalt- auch Direktwarmwasserversorgung von Geschirrspülern und Waschmaschinen vorgesehen	11
246: Fehlende Zusage seitens der Fernwärme Wien zur Herstellung eines Fernwärmeanschlusses (max. 25 kW pro Gebäude bei 4 Gebäuden) erforderte Umplanung auf Gasversorgung. Vgl. Situation im Pr. "Ludesch"	18
247: Zitat: "Der Einsatz von Gasherden in den Küchen stellt eine weitere Möglichkeit zur Reduktion des Energieverbrauchs dar." Anm. Autor: diskussionswürdig.	11
248: Einsatz wassersparender Armaturen und Spülsysteme	8

Tab. 11: Hervorzuhebendes im Projekt "Wohnbau, Holz-Passivhaus" (Mehrgeschossiger geförderter Wohnbau für 70 Wohneinheiten Holzmassivbauweise, Passivhausstandard Mühlweg, 1210 Wien). – Fortsetzung.

standard Muniweg, 1210 Wien). – Fortsetzung.	C - : 4 -
Inhalt	Seite
249: Betrieb der Solaranlage über Contracting ausgelagert	11
(angegebener Deckungsgrad 66%, Nachheizung über ein Gas-	
Brennwertgerät). Generell wurden im Projekt mehrere Bereiche	
über Contracting ausgelagert, es wurden aber nur Contractoren	
einbezogen, die über das österreichische Umweltzeichen für Con-	
tracting verfügen	
250: Abdeckung des "Restwärmebedarfes" für Heizung und	8
Warmwasser durch Sonnenenergie. Anm. Autor: Widerspruch?	
Kosten	
251: Preisangabe aus Anbot zu PH-Fenstern im großvolumigen	29
Geschoßwohnungsbau: Fa. Gaulhofer: rd. € 460.000,- f. rd. 1.650m ²	
$= rd. \in 280, -/m^2$ Fensterfläche	
252: Kostenranking für Wien für die drei Hauptbauweisen aus der	45
Sicht des Bauherren im Zeitraum 2005 - 2008 (Abgabe Endbericht):	
Holz-Mischbauweise (am teuersten) \rightarrow Holzriegelbauweise (10%)	
teurer als Massivbauweise) → Massivbauweise	
253: Abrechnung der Heizkosten erfolgt nach beheizter Fläche.	11
Eine individuelle, verbrauchsbezogene Abrechnung ist laut	
Heizkostenabrechnungsgesetz nicht notwendig und wäre außerdem	
kostenintensiv.	
254: Angaben zu Mehrkosten für die Einrichtung der Möglichkeit	31
zur raumweisen Temperaturregelung über entsprechende statische	01
Heizflächen: zwischen 10-15,- €/m2 (Bauherr BAI) einerseits und	
20,-€/m2 (Schöberl & Pöll, 2007) andererseits	
Sonstiges	
255: Netzfreischaltungen zur Vermeidung von Magnetfeldern im	8
Schlafbereich	O
256: Hauptschalter beim Wohnungseingang für zusätzliche	8
Stromeinsparungen durch Reduktion des Verbrauchs an grauer	O
Energie. Anm. Autor: Welcher Zusammenhang?	

Pr. "Weiz" 3.9

Tab. 12: Hervorzuhebendes im Projekt "Erprobung von Passivhausstandards am Beispiel des Weizer- Energie- Innovations- Zentrums"

Inhalt		Seite
Baukonstruktionen	/ Sanierung	

Tab. 12: Hervorzuhebendes im Projekt "Erprobung von Passivhausstandards am Beispiel des Weizer- Energie- Innovations- Zentrums" – Fortsetzung.

Beispiel des Weizer- Energie- Innovations- Zentrums" – Fortsetzung.	G •1
Inhalt	Seite
257: Zentrierung des Passivhaus-Gebäudes um überdachtes, unbe-	16
heiztes Atrium: Nordseitiges, glasüberdachtes Atrium, das sich	
über drei Geschosse erstreckt. Atrium ist Abluftzone, Verkehrs-	
fläche und Lichtöffnung. Minimaltemperatur von 15°C im Atrium	
ohne Zusatzheizung dann einhaltbar, wenn keine Nachtabsenkung	
durchgeführt wird.	
258: Problem Dachflächenfenster (in PH-Qualität schwer verfügbar)	13
↔ Passivhauskonzept: Lösungsansatz: Belichtung des Atriums über	
Dach derart, daß eine Umlenkung des einfallenden Lichts auf die	
"Rückseite" der Büros (U-förmiger Gebäudekomplex) möglich ist.	
Lüftung	
259: Einsatz eines Erdwärmetauschers in einem Bürohaus: Detail-	17
lierte Simulation. Verlegung unter dem Kellerfundament. Simula-	
tionsergebnisse flossen in den Bericht "Passive Kühlkonzepte für	
Büro- und Verwaltungsgebäude mittels luft- bzw. wasserdurch-	
strömten Erdreichwärmetauschern" unter der Nummer 35/2002	
in der Schriftenreihe "Berichte aus Energie- und Umwelt-	
forschung" ein. Zentrale Nacherwärmung der Zuluft nach dem	
Erdwärmetauscher in vier Heizkreisen.	
260: Lüftung im Sommerfall: Leistungsreserve der Ventilatoren von	17
2 (= die stündliche Volumenleistung kann auf das Doppelte jener	
Volumenleistung hochgefahren werden, mit der die Anlage während	
der Heizperiode betrieben wird).	
261: Energetischer Effekt von Erdwärmetauscher und	17
Wärmerückgewinnung: 23kW als Reduktion der	
Lüftungswärmeverlustleistung aufgrund von Erdwärmetauscher	
und Wärmerückgewinnung bei -10°C Außentemperatur. 23kW	
= fast die Hälfte der Heizlast ohne Erdwärmetauscher und	
Wärmerückgewinnung.	
262: Maximal benötigte Zulufttemperatur: 45°C → Verschwelung	17
ausgeschlossen.	
263: Abschalten der Lüftungsanlage bei über 14°C Außentemper-	18
atur, hyg. Luftwechsel war ab dieser Temperatur laut Planung über	
Fensterlüftung sicherzustellen	
264: Regelung der Zulufttemperatur: Regelung über einen Temper-	27
aturmittelwert, der in jeweils einem Referenzraum pro Zone von in-	
sgesamt drei Zonen erfaßt wird. Eine Einzelraumregelung der an die	
Räume herangeführten Zulufttemperatur wäre zu aufwändig gewor-	
den. Statt dessen individuelle Nachheizung der Räume \rightarrow siehe Z.	
271.	

Tab. 12: Hervorzuhebendes im Projekt "Erprobung von Passivhausstandards am Beispiel des Weizer- Energie- Innovations- Zentrums" – Fortsetzung.

Inhalt	Seite
265: Luftmengenauslegung: Bei generellem Rauchverbot 35 m³/h/Person von der Behörde verlangt. Bei Raucherlaubnis 50 m³/h/Person. Fazit des Planers im Bericht (als Autor Beitrag eines eigenen Abschnitts im Bericht): Raucherlaubnis und rein frischluftbeheiztes Passivhaus sind unvereinbare Forderungen.	25
266: Luftbefeuchtung: Einbau elektrisch beheizter Dampfluftbefeuchter, um im Bedarfsfall zu trockene Luft vermeiden zu können.	26
267: Planung der Nachtlüftung: Über gekippte Fenster in den Büros und Dachöffnungen im Atrium. Diese Lüftungsvariante hat sich allerdings nicht bewährt, da oft darauf vergessen wurde, die Fenster zu öffnen.	1
Heiztechnik 268: Ursprünglich geplantes Passivhaus-"Hardcore"-Prinzip (keine Heizflächen) nicht verwirklicht: Verwaltungsbereich liegt an der Nord-Ostseite des Erdgeschosses → zu wenig Sonneneinstrahlung im Winter resultierte aus der Einzelraumbetrachtung. Überdies ist dieser Bereich nahe am Haupteingang gelegen → trotz Windfang von dort deutlicher Kaltlufteinfall befürchtet. Kaltlufteinfall in abgeschwächter Weise auch für Atrium befürchtet. Vorschlag des Planers: Fußbodenheizung für Verwaltung u. Atrium, um Behaglichkeitsrisiko zu vermeiden. Vorschlag wurde umgesetzt. Zitat des Planers: "Zum Glück für das Projekt und die Mitarbeiter in der Administration konnten sich in diesem Fall die "Praktiker" gegen die Vertreter der "reinen Passivhaus-Lehre" durchsetzen, denn im Nachhinein erwies sich das Vorhandensein einer Fußbodenheizung insbesondere in den Verwaltungsräumen als absolut notwendig." Fußbodenheizungen auch in Sanitärräumen.	27
269: Maßnahme, um spätere Nachrüstung aktiver Gebäudekühlung zu erleichtern: Keine aktive Gebäudekühlung dafür aber ein "leerer" Wärmetauscher im Luftsystem vorgesehen, um ggf. später über diesen Tauscher kühlen zu können.	26
270: Starke Abweichung der Ist-Werte von den Planwerten: Wärmebedarf von 45.000 kWh/a statt geplanten 24.000. Maximaltemperaturen in einzelnen Büros von 30°C statt 26°C wegen Nichtdurchführens der erforderlichen manuellen Nachtlüftung (p. 28).	1
271: Individuelle elektrische Nachheizung der einzelnen Räume.	1
Sonstiges 272: Gebäudesimulation: Einsatz von TRNSYS	1

Tab. 12: Hervorzuhebendes im Projekt "Erprobung von Passivhausstandards am Beispiel des Weizer- Energie- Innovations- Zentrums" – Fortsetzung.

Inhalt	Seite
273: Thermographie: Zahlreiche interessante, weil kommentierte	87
Thermographieaufnahmen (Wärmebrücken, Leckagen) im Anhang.	
Wertvoll, weil in dieser erläuternden Form selten zu finden.	
274: Sommerverhalten im Monitoring: Auflistung interessanter	67
ungelöster Fragestellungen zum Sommerverhalten des Gebäudes	
im Juni 2002. Beispiele: zu geringe Luftmengen, unzureichende	
Luftverteilung über die Räume hinweg. Unklares Zusammenspiel	
zwischen freier und Zwangslüftung.	
275: Mietereinbindung: Abbildung eines Infoblattes zur Ein-	69
bindung der Mieter in Maßnahmen zur Sicherstellung ausreichender	
Nachtkühlung.	
276: Ergebnisse einer gezielten Nutzerbefragung von 2003.	56
277: Internationaler Vergleich: Tabellarische Darstellung eines Ver-	60
gleichs mit anderen vier ähnlichen deutschen Bürogebäuden in	
bezug auf 12 Vergleichskriterien.	
278: Pionier im österreichischen Büro-Passivhausbau: Erster "Ver-	8
such in Österreich ein Bürohaus als Passivhaus" zu errichten. Letz-	
tendlich "erstes in der Steiermark fertiggestelltes Büro-Passivhaus".	
Holzhaus.	
279: Passivhaus-Besonderheiten von Bürohäusern: Guter Abschnitt	15
über die wichtigsten Unterschiede zwischen Wohnungs- und Ver-	
waltungsbau im Passivhaus-Planungsbereich.	
280: Pioniergebäude: Das W.E.I.Z. wurde, erstmals als Bürohaus	12
dieser Größenordnung, als Holzbau errichtet. Dabei sind in allen	
Bauteilen und in der Wahl der Dämmmaterialien der Stand der	
Technik in Holzbau und industrieller Vorfertigung zur Anwendung	
gekommen. Insgesamt kommt eine Kombination aus leichten und	
massiven Elementen zum Einsatz. Aus der fehlenden Speichermasse	
(trotz einiger massiver Elemente wie Stiegenhaus, Estrich, Einbaut-	
en in Erschließungszone) leitet sich zudem der Bedarf nach ein-	
er automatischen Querlüftung in der Nacht ab, um in besonders	
heißen Perioden angenehme Innentemperaturen zu gewährleisten.	
Im Rahmen des Projektes werden sowohl die technischen und	
elektronischen Komponenten, als auch Lösungen für Fragen des	
Schallschutzes zwischen den Büros erprobt.	

Tab. 12: Hervorzuhebendes im Projekt "Erprobung von Passivhausstandards am Beispiel des Weizer- Energie- Innovations- Zentrums" – Fortsetzung.

Inhalt	Seite
 281: Folgende Elemente sind von direktem Demonstrationscharakter bzgl. Lüftung / Heizung / Kühlung im W.E.I.Z.: 1. Sorgfältige Zonierung und Steuerung der Zu- und Abluftanlage zur Gewährleistung etwaiger unterschiedlicher Komfortbedingungen (Temperatur, Luftwechsel, unterschiedliche Wärme- oder Kühllasten); 2. Kostenminimierung durch Optimierung von Kanallängen und Integration der Haustechnik in die Vorfertigung der Bauteile; 3. Nutzung der Anlage im Sommer und im Winter und steuerungstechnische Kombination mit der Forderung nach öffenbaren Fenstern. 	12
282: Funktion des Atriums im Lüftungsgesamtkonzept: Die Kosten für die Lüftungsanlage konnten reduziert werden, da das Atrium selbst als luftführender Raum für die Abluft aus den Büros verwendet wird. Zwei Abluftansaugstutzen im Nordtrakt des Atrium erzeugen dort einen Unterdruck und führen zu einer vollständigen Querströmung von den im Oberlichtbereich der Büros platzierten Zuluftauslässen über schallgedämmte Überströmöffnungen in den Trennwänden zu den Laubengängen des Atriums.	16
283: Nutzen des Erdregisters zur aktiven Kühlung: Während der Perioden mit Außentemperaturen über 27 Grad C wurde in der Simulation das Erdregister zur aktiven Kühlung mit dem für die Lüftungsanlage ausgelegten Massenstrom von 3200m³/h befahren. Bei sommerlicher Erdregisterkühlung wird die Wärmerückgewinnung der Lüftungsanlage durch einen Bypass umfahren.	19
284: Benutzereingriffe versus automatisierte Regelung: Schon in der Planungsphase wurde diskutiert, welche "Bevormundungen", die für das Funktionieren des gesamten Hauses im Regelungssystem notwendig waren, in der Benützung dem Mieter zuzumuten sind und welche individuelle Regelungen trotzdem möglich sein müssen. In den meisten Fällen (von individueller Raumtemperaturregelungen im begrenzten Ausmaß, von Unterbrechungsmöglichkeit der Jalousiensteuerung und Meldesensoren bei geöffneten Fenstern und die Rückmeldung über die Zentrale zu den jeweiligen Mieter, zentral gesteuerter Umluftbetrieb während der Nacht und am Wochenende, etc) werden die Regelungen nicht als Einschränkung empfunden.	22

Tab. 12: Hervorzuhebendes im Projekt "Erprobung von Passivhausstandards am Beispiel des Weizer- Energie- Innovations- Zentrums" – Fortsetzung.

Inhalt	Seite
285: Nachtlüftung - tatsächliches Nutzerverhalten: In der Simula-	22
tion war vorgesehen, dass in den Büros über gekippte Außenfenster	
und geöffnete Lüftungsklappen von den Büros zum Atrium eine	
Nachtlüftung durchgeführt werden sollte. Auf diese Notwendigkeit,	
die nur manuell zu handhaben ist, wurde anfangs oft vergessen,	
was dazu führte, dass keine relevante Nachtabkühlung in den Büros	
stattfand.	
286: Raucherproblematik (Luftwechsel): Zu Beginn der Besiedelung	29
wurde mit den Mietern zuerst ein zweimonatiges Rauchverbot im	
Haus vereinbart, das danach in ein dauerndes ausgedehnt wer-	
den konnte. Dadurch ist im Winter der Betrieb auf der niedrigen	
Lüftungsstufe möglich. Die höhere Betriebsstufe kann im Sommer	
zu Kühlzwecken genutzt werden.	
287: Außenliegende Ventilatormotoren am Lüftungsgerät zur Ver-	30
meidung von unerwünschten Wärmegewinnen im Sommerbetrieb:	
In einem Bürogebäude bestimmt das Verhalten im Sommer die	
Nutzerzufriedenheit viel stärker als die Beheizung im Winter!	
288: Aufteilung der Lüftungszonen in Raumbereiche: In der Flexi-	30
bilität der Büroaufteilung stößt das Passivhaus an seine Grenzen.	
289: Luftbefeuchtung ist unumgänglich: Besondere Umstände sind	30
die hohe Ausstattung mit Büro-Elektronik und deren Anforderun-	
gen sowie die Besonderheiten des Holzbaus.	
290: Genaue Messung und Einregulierung der Gesamtanlage: Das	31
wurde verabsäumt und musste nachträglich mit ungleich höherem	
Aufwand im Rahmen der Begleitforschung vollkommen neu be-	
gonnen werden.	
291: Wärmeverbrauch versus Wärmebedarf: Der Wärmeverbrauch	32
des Gebäudes liegt deutlich über den errechneten Werten, auch	
über den Grenzwerten für ein Passivhaus, obwohl ein Teil des	
Wärmebedarfs über die installierten Geräte gedeckt werden kann.	
Besonders hoch ist der Verbrauch im Frühjahr. Er deutet darauf	
hin, dass das Nutzerverhalten (Öffnen der Fenster) noch nicht an	
die Bedingungen des Passivhauses angepasst ist.	
292: Anstieg Stromverbrauch: Der Stromverbrauch ist in zwei Jahren	36
um 100 % gestiegen und liegt bei ca. 130 kWh pro m^2 Bürofläche	
oder viermal so hoch wie der gesamte Wärmeverbrauch.	

Tab. 12: Hervorzuhebendes im Projekt "Erprobung von Passivhausstandards am Beispiel des Weizer- Energie- Innovations- Zentrums" – Fortsetzung.

Inhalt	Seite
293: Höhere Wärmelasten durch angestiegenen Stromver-	36
brauch: Größte Problembereiche für die Übertragung des	
Passivhaus–Konzeptes auf Bürogebäude: - Steigender Einsatz	
von elektrischen Anlagen (vorrangig EDV) führt zu steigenden	
internen Lasten (Sommerverhalten wird entscheidend).	
1. In einem Gebäude mit wechselnden Mietern ist es unmöglich,	
die Lüftung für alle Eventualitäten zu dimensionieren und indi-	
viduell einzustellen.	
2. Nutzungen mit internen Lasten, die sich auch mit 50 m ³ /Person	
und Stunde und Nutzung der Nachtkühlung nicht kühlen lassen, sind in einem Passivhaus fast nicht bewältigbar.	
3. Punktuell hohe Innentemperaturen durch Fremdwärme im Win-	
ter können sogar zu Komfortproblemen in anderen Bereichen	
führen, wenn sie in die Ermittlung einer mittleren Temperatur	
als Regelgröße eingehen.	
4. Im Winter führen hohe interne Lasten bei gleichzeitigem Heizbe-	
trieb zum Öffnen von Fenstern, was die Heizleistung sogar noch	
steigern kann. Wahrscheinlich ist das Konzept des Passivhaus-	
es nur einsetzbar, wenn klare Nutzungsvorgaben möglich sind,	
ohne die Wirtschaftlichkeit des Hauses zu beeinträchtigen.	
294: Temperaturmessungen: Die wichtigste Erkenntnis war, dass die	41
Raumtemperaturen sehr stark schwanken. Das bedeutet, dass Be-	
nutzung (z.B. Anwesenheit und installierte Geräte) sowie Lage (in-	
direkt damit auch die aktive Luftverteilung) im Gebäude deutlich	
mehr Einfluss haben als die Gebäudehülle. Die Kurven zeigen auch,	
dass das Gebäude im Mittel zwar durchaus im komfortablen Bereich	
liegt, in einigen Räumen aber deutlich zu niedrige Temperaturen im	
Winter, in anderen zu hohe Temperaturen im Sommer auftreten.	
In einem Gebäude mit zahlenden und wechselnden Mietern ist das	
ein Grund für Unzufriedenheit und ist mit bewusstseinsbildenden	
Maßnahmen nur schwer in den Griff zu bekommen.	

Tab. 12: Hervorzuhebendes im Projekt "Erprobung von Passivhausstandards am Beispiel des Weizer- Energie- Innovations- Zentrums" – Fortsetzung.

Inhalt	Seite
295: Sommerproblematik: Grundsätzlich ist das Gebäude ohne Prob-	41
leme auch auf über 22 Grad beheizbar, was von den MieterInnen	
auch ausgenutzt wird. Der Komfortanspruch ist jedenfalls deutlich	
höher als in der Simulation angenommen. Deutlich problematis-	
cher wird das Sommerverhalten wahrgenommen. Ohne zusätzliche	
Kühlung können Komfortbedingungen nicht eingehalten werden.	
Die geplante Nachtkühlung bedarf der aktiven Beteiligung aller	
MieterInnen und wurde in den beiden ersten Jahren praktisch	
überhaupt nicht eingesetzt. Im Jahr 2003) wurden erste Erfolge mit	
Bewusstseinsbildung (Informationsblätter) erzielt, die sich allerd-	
ings noch nicht quantifizieren lassen.	
296: Rahmenbedingungen für ein frei vermietbares Passiv	48
Bürohaus:	
1. Übererfüllung der Anforderungen an Dämmung,	
Gebäudedichtheit und baulichen Sonnenschutz.	
2. Wahl eines Gebäudekonzeptes, das sicherstellt, dass alle Büros	
vergleichbare Bedingungen vorfinden (gebäudeabhängige Heiz-	
und Kühllast, Länge der Luftleitungen).	
3. Einschränkungen für die Mieter bezüglich spezifischer	
Wärmeeinträge (z.B. Laborgeräte) und extremer Belegun-	
gen.	
4. Gemeinschaftliche Lösung für Raucher.	
5. Einbau von Sicherheiten für Luftmengen, Kühlung und Be-	
heizung für besondere Umstände.	
Alle diese Forderungen sind nicht ohne Mehrkosten gegenüber	
herkömmlichen Bürobauten zu verwirklichen. Wahrscheinlich wird	
die Ausführung als über die Lüftung beheiztes und gekühltes Pas-	
sivhaus nur in wenigen Fällen die sinnvollste Lösung darstellen.	
297: Schwierigkeiten, Nutzerverhalten bzgl. Nachtlüftung zu	49
beeinflussen: Keine messtechnisch nachweisbare dauerhafte	
Verbesserung der Temperatur- und Energiebilanz im gesamten	
Gebäude.	
298: Das Thema der sommerlichen Überwärmung dominiert	58
die Akzeptanz des Gebäudes. Es wurden vor allem im Som-	
mer, teilweise jedoch auch schon in der Übergangszeit und im	
Winter unerträgliche, zumindest aber unangenehme Tempera-	
turen in fast allen Gebäudebereichen erreicht. Die Ursachen sind	
im Wesentlichen durch die gegenüber den ursprünglichen Pla-	
nungswerten erheblich gestiegenen Wärmelasten sowie der zu knapp	
ausgelegte Erdreichwärmetauscher.	

Tab. 12: Hervorzuhebendes im Projekt "Erprobung von Passivhausstandards am Beispiel des Weizer- Energie- Innovations- Zentrums" – Fortsetzung.

Inhalt	Seite
299: Von den Nutzern empfundene Trockenheit der Raumluft	58
während der Wintermonate ⇒ Einbau einer Dampf-Hochdruck-	
Befeuchtungsanlage. Hauptproblem dieser Art der Befeuchtung:	
Kondenswasserbildung in den Zuluftkanälen im Bereich des	
Lüftungsraumes.	
300: Ableitung von Empfehlungen für energetisch optimierte	74
Bürobauten:	
1. Konzentration auf die Optimierung des Sommerbetriebes	
2. Hinterfragen des Passivhaus-Konzeptes	
3. Qualitätssicherung in Planung und Ausführung	
4. Optimierung der Kosten-Nutzen Relation	
301: Betonung des Kostendrucks - Fazit aus Sicht der Autoren:	75
Nachdem im W.E.I.Z. die Verwirklichung eines konse-	
quenten Passivhaus versucht, diese aber durch knappe	
Mittel in vielen Facetten infrage gestellt wurde, sollte	
diesmal die Strategie geändert werden. Statt der Defi-	
nition energetischer Zielwerte sollten ein Budget sowie	
Nutzungs- und Komfortziele festgelegt und die maxi-	
male energetische Effizienz gefordert werden, ohne das	
Ergebnis bereits vorweg zu nehmen.	

3.10 Pr. "SAQ, San. Kommun. Gebäude"

Tabelle mit Qualitätskriterien pro Gebäudeart, S. 30.

Tab. 13: Hervorzuhebendes im Projekt "SAQ – Sanieren mit Qualität Qualitätskriterien für die Sanierung kommunaler Gebäude"

Inhalt	Seite
302: Versuch, eine ökologische Sanierung in Salzburg zu bewirken:	10
Acht kommunale Objekte unterschiedlicher Nutzung umfassend	
bestandserhoben und nach einer zuvor ausgearbeiteten Meth-	
ode einheitlich bauökologisch bewertet. Bewertung verschiedener	
Sanierungsvarianten nach gleicher Methode sowie gemäß einfachem	
Kosten-/ Nutzenvergleich. Zusammenfassung der Bewertungskrite-	
rien auf S. 30.	
303: EXCEL-Tool: Entwicklung eines eigenen EDV-Tools (EXCEL)	33
zur Darstellung der Bewertungsergebnisse.	
	19

Tab. 13: Hervorzuhebendes im Projekt "SAQ – Sanieren mit Qualität Qualitätskriterien für die Sanierung kommunaler Gebäude" – Fortsetzung.

Inhalt	Seite
305: Übersichtstabelle über ausgewählte Objekte und Sanierungss-	21
chwerpunkte	21
306: Kosten der Sanierung: Für jede Sanierungsvariante wurde auch	29
eine Kostenbewertung durchgeführt.	
307: Arbeitshypothese: Sanierung bestehender Bausubstanz ist aus	15
ökologischen Gründen einem Neubau vorzuziehen.	10
308: Präsentation der Ergebnisse in den einzelnen Gemeinden,	16
Rückmeldungen in Sanierungskonzepte mit eingearbeitet.	10
309: Umfassende Erhebung zum kommunalen Gebäude-	17
sanierungsbedarf: Erhebung des Sanierungsbedarfs in allen	11
119 Salzburger Gemeinden über Erhebung des Sanierungspoten-	
zials der nächsten 2 Jahre. Längerer Untersuchungszeitraum als	
nicht sinnvoll erachtet, da der Sanierungsbedarf zu stark vom -	
volatilen - Fördersystem abhängt.	
310: Nach Möglichkeit sollten auch historische Energiekosten- bzw.	17
Energieverbrauchsdaten von Objekten erhoben werden. Stellte sich	11
als nicht zielführend heraus, da vielfach diese Daten offensichtlich	
nicht aufbereitet vorlagen bzw. nicht wirklich bekannt waren.	
	17
311: Angaben zu geplanten Sanierungen in der schriftlichen Erhe-	17
bung wurden mit bereits zugesicherten Förderungen bzw. den bereits haben wirden Förderungsgeben (Vann gestien wit	
its bekannten Förderungsanmeldungen verglichen (Kooperation mit	
der Landesbehörde) und nach verschiedenen Gebäudekategorien	
sowie den soweit geplanten Sanierungsmaßnahmen klassifiziert.	10
312: Häufig unbekanntes Baualter von Schulen: Zu vielen Schulen	19
keine Angaben zum Baualter in den Fragebögen. Vermutung, dass	
ein Großteil dieser Gebäude aus den 60- er bis 70- Jahren stammt,	
da es in dieser Zeitperiode eine Bauwelle bei Schulneubauten gab.	
Daher gibt es derzeit in dieser Kategorie einen hohen Sanierungs-	
bedarf in den nächsten Jahren (innerhalb der nächsten zwei Jahren wenden für Schulzenierungen im Bundesland Schulzen au. 20 Mie	
werden für Schulsanierungen im Bundesland Salzburg ca. 20 Mio.	
Investitionsvolumen erwartet). Ein Thema bei Schulsanierungen	
könnte sein, dass die Schulgebäude auf einen zeitgemäßen Standard	
bezüglich des Raumprogramms gebracht werden.	10
313: Nicht-energetischer Sanierungsgrund für Schulen "kleinere	19
Klassen": "Während früher Klassen, entsprechend den damals	
üblichen Schülerzahlen, pro Klasse von etwa 30 – 35 Schülern di-	
mensioniert wurden, sind heute einerseits kleinere Schülerzahlen	
pro Klasse üblich, andererseits ergibt sich aufgrund des	
zunehmenden Unterrichts in Kleingruppen o.ä. ein Bedarf nach	
mehr, dafür aber durchaus kleineren Räumen."	

Tab. 13: Hervorzuhebendes im Projekt "SAQ – Sanieren mit Qualität Qualitätskriterien für die Sanierung kommunaler Gebäude" – Fortsetzung.

Quantauskinerien für die Samerung kommunater Gebaude – Foruse	U
Inhalt	Seite
314: Schwerpunkte Schulsanierung: Ein großer Sanierungsbedarf liegt bei Gebäuden aus den 60er und 70-er Jahren. Auffallend war die große Anzahl an Nennungen im Fragebogen im Bereich "Turnhallen".	19
315: Sanierungsgrund für Seniorenheime: Durch die zunehmende Funktion als Pflegeheim (anstatt eines reinen Seniorenwohnheims)	19
ergeben sich neue Anforderungen an die Innengestaltung (z.B. Mindestbreite für Bettentransport). Vielfach ist eine Sanierung auf den Stand heutiger Anforderungen schwer möglich, da tragende Mauern als Gangbegrenzungen etc. eine entsprechende Sanierung erheblich erschweren. Daher wird anstatt einer Sanierung vielfach ein Neubau realisiert.	
316: Vorschlag zur einfachen Beurteilung des Wärmebereitstellungssystems in der Sanierung: Nach "Panzhauser" erfolgt die Beurteilung anhand des Jahresnutzungsgrades nach ÖNORM H5056 mit einer Punktebewertung zwischen -5 und +7. Stellte sich allerdings als nicht sehr praxistauglich dar, weil Jahresnutzungsgrade bei bestehenden Heizsystemen nur mit großem Aufwand ermittelbar sind. Überschlägige Ermittlungsmethoden sind zwar prinzipiell möglich aber für im Projekt gewünschte Bewertungsgenauigkeit ungeeignet. Vorschlag zu einem alleinigen Kriterium "Energieträger": *) Fernwärme *) Heizzentrale *) Wärmepumpe *) Biomasse *) Abwärme	24
317: Bezugnahme auf das Bewertungsschema aus "Altbaumodernisierung – der praktische Leitfaden, Johannes Fechner (Hrsg.), 2002". Verbesserungsvorschläge sind angeführt.	24
318: Bezugnahme auf LEK- Wert: Zielvorgabe LEK- Wert von max. 22 erreichbar (ausgenommen sind unter Umständen jene Gebäude, die dem Denkmalschutz unterliegen), wird aber als nicht besonders ambitiös erachtet.	23
319: Bewertung anhand der OI3 lc –Bewertungskennzahl konnte wegen noch fehlender Baustoff- Kennwerte noch nicht durchgeführt werden.	27
320: Eingeschränkte Verallgemeinerbarkeit des Bewertungssystems: Nicht für jedes zu sanierende Objekt waren gleichermaßen alle Bewertungskriterien anwendbar bzw. für eine Sanierungsentscheidung relevant. Z. B., wenn die Standortfrage definitiv außer Diskussion steht.	29
321: Pflicht- und Zusatzkriterien: Rückmeldungen führten zu einer Unterscheidung der Bewertungskriterien in "Pflichtkriterien", die unabhängig vom Objekttyp angewendet werden, und darüber hinausgehende Zusatzkriterien, die angewendet werden können.	29

Tab. 13: Hervorzuhebendes im Projekt "SAQ – Sanieren mit Qualität Qualitätskriterien für die Sanierung kommunaler Gebäude" – Fortsetzung.

Inhalt	Seite
322: Abhängigkeit der Bewertung von der Gebäudenutzung:	29
Gebäudebezogene Qualitätskriterien wurden immer betra-	
chtet, da im Zuge der Sanierung prinzipiell verbesserbar.	
Gebäudetypenabhängige Nutzungsprofile beeinflussen aber	
Qualitätsanforderungen. Z. B. wirkt sich bei einer zeitweise	
genutzten Lüftungsanlage ein höherer spezifischer Strombedarf	
weniger aus als bei einem permanent genutzten Gebäude mit	
permanent betriebener Anlage.	

3.11 Pr. "PH-San. denkmalgesch. Gebäude"

Thermische und hygrische Simulationen mit TRNSYS an einem Althaus mit 60cm Natursteinmauerwerk. Schwerpunkt: Beurteilung des Feuchteverhaltens in bezug auf mögliche Schimmelbildung zwischen Innendämmplatten und bestehender Außenwand.

Tab. 14: Hervorzuhebendes im Projekt "Ökologische Sanierung eines denkmalgeschützten Gebäudes mit Passivhaustechnologien"

Inhalt	Seite
Baukonstruktionen / Sanierung	
323: Berücksichtigung des kapillaren Feuchtetransports in der	37
Berechnung zum Kondensations-/Schimmelschutz in Bauteilen	
liefert überraschende Ergebnisse: Der kapillare Feuchtetransport	
führt zu geringeren Kondensatmengen im Simulationsergebnis als	
wenn man diese Feuchtetransportart nicht berücksichtigte (in der	
Norm nicht berücksichtigt). Anders als aufgrund der geringeren	
Kondensatmengen evtl. zu erwarten, ergeben sich dennoch un-	
zulässige Zustände hinsichtlich der relativen Feuchte (Schimmel-	
gefahr), die bei Nichtberücksichtigung des kapillaren Feuchtetrans-	
ports (Berechnung laut Norm) nicht auftreten.	
324: Simulation des Feuchtezustandes der Bauteile über lange Zeit-	40
dauern: Simulationsergebnisse für einen Bauzustand 10 Jahre nach	
der Sanierung (der simulierte Zustand ist nichtstationär, eventuelle	
Akkumulationen von Kondensat würden abgebildet)	

Tab. 14: Hervorzuhebendes im Projekt "Ökologische Sanierung eines denkmalgeschützten Gebäudes mit Passivhaustechnologien" – Fortsetzung.

Inhalt	Seite
325: Fazit der Feuchtesimulation: Bei Innendämmung nur mit	44
Kalziumsilikatplatten alleine würde im für das zu dämmende	
Natursteinmauerwerk (angenommene Wärmeleitfähigkeit von et-	
wa 2 W/mK) simulierten Fall Schimmelpilzrisiko bestehen (zwis-	
chen Innendämmung und Mauerwerk). Eine reine Innendämmung	
ist hier daher nur zulässig, wenn sie quasi dampfdicht (Schaum-	
glas, Vakuumisolation, Vorsatzschale mit dichter Dampfbremse)	
ausgeführt wird. Daher	
1. entweder dampfdichte Innendämmung verwenden (Problematik,	
dampf- bzw. luftdichte Anschlüsse dauerhaft herzustellen) oder	
aber	
2. zusätzlich zur Innendämmung eine Außendämmung verwenden.	
2. Zasawznen zur innendammung eine Habendammung verwenden.	
326: Reduktion des Heizwärmebedarfs auf 24 kWh/m² a möglich:	4
Außendämmung mit Abluftwärmerückgewinnung erreicht Re-	-
duktion auf 24 kWh/m ² a Heizwärmebedarf. Bei der seitens	
des Denkmalschutzes bevorzugten Innendämmvariante werden 38	
kWh/m^2 a erreicht.	
327: Reduktion des Heizwärmebedarfs auf 38 kWh/m² a durch	46
Innendämmungsanierung möglich: Eine Sanierung des Be-	10
standsgebäudes mit Innendämmung der massiven Wände	
(Szenario 06a) führt zu einem Heizwärmebedarf von etwa	
60 kWh/m ² a. Der zusätzliche Einbau der Lüftungsanlagen mit	
hocheffizienter Wärmerückgewinnung (Szenario 07a) verringert	
den Heizwärmebedarf auf etwa 38 kWh/m ² a.	
328: Gleichzeitige Außen- und Innendämmung in der Sanierung: In-	29
teressante Variante (Variante 8) mit gleichzeitiger Außen- (10cm)	29
und Innendämmung (2,5cm) mit geringsten Wärmebrückeneffekten	
nach thermischer Simulation. Die Denkmalschutzbehörde zieht	
allerdings ausschließliche Innendämmung vor. Im Projekt aber mit	
modifizierter Variante mit 20cm Außendämmung und 2,5cm In-	
nendämmung "weitergerechnet".	
329: Graphische Darstellung der Lage der Wärmebrücken: Genaue	51
Angabe der Wärmebrücken, eingezeichnet in einen Grundriß des	01
Gebäudes. Dargestellt sind Wärmebrücken, die in Außenwänden	
aber auch Wärmebrücken, die in Innenwänden liegen, in jeweils	
unterschiedlichen Farbcodes.	
unterschiedlichen Farbeodes.	

Hervorzuhebendes im Projekt "Ökologische Tab. Sanierung denkmalgeschützten Gebäudes mit Passivhaustechnologien" – Fortsetzung.

	Coita
Inhalt	Seite
330: Sanierung von Kastenfenstern durch Scheibentausch: Zur	4
Sanierung von Kastenfenstern wurden die Varianten Austausch des	
vorhandenen Glases im Innenflügel durch eine K-Glas-Scheibe oder	
durch eine Vakuumverglasung untersucht. Dabei hat sich gezeigt,	
dass der Einsatz der Vakuumverglasung keine nennenswerten	
Verbesserungen gegenüber dem K-Glas ergäbe, aber ungleich	
höhere Kosten verursachte.	
Heiztechnik	
331: Darstellung errechneter Jahresdauerlinien: Jahresdauerlinien	85
für Heiz- und -kühlast aus der Simulation zum Jahr 2005	
332: "Free cooling"-System für Kühlung nach Sanierung ausre-	-2
ichend: Geringe Kühllast aufgrund thermischer Simulation. Es re-	
icht nach der Sanierung ein über die Tiefenbohrung realisiertes "free	
cooling"-System.	
Sonstiges	
333: Vorgangsweise Sanierungsplanung: "Anamnese" eines Altbaus	3
mit den typischen Symptomen. Guter Überblick, um sich einen Be-	
griff der wichtigsten Schritte bei der Bestandsaufnahme zu bilden.	
334: Verwendung lokaler, eigener Messungen für Klimadatensätze:	13
Simulation der Wärmeströme zwischen erdberührten Bauteilen und	
Erde. Aufbereitung und Einsatz lokal verfügbarer Meßdaten zum	
Klima für die Simulation - allerdings nur für den Zeitraum 2002 –	
2005.	
335: 3D-Berechnung-Darstellung der Temperaturfeld-Ergebnisse der	33
Wärmebrücken der Erdgeschoß-Außenecke des Bestandes.	
336: Vergleich Ergebnisse laut EN ÖN Norm mit Ergebnissen laut	34
thermisch-hygrischer Simulation hinsichtlich der Feuchtebilanz:	
Die Bedeutung des Einbeziehens von kapillarem Feuchtetrans-	
port, Schlagregen und solarer Erwärmung der Außenwand für die	
Feuchtebilanz wird an Variante 6 durch mehrere Simulationen deut-	
lich gemacht. Diese Einflüsse werden in der Norm EN 13788 nicht	
berücksichtigt.	
337: Nutzungsprofile (Luftwechsel, Temperaturen, Wochenprofile	71
für innere Wärme- und Feuchtelasten) gemäß Merkblatt 2024 der	, ,
Schweizer SIA und der deutschen Vornorm DIN V 18599-10	
converse and and additional voluntial Bit. V 10000 10	

Pr. "Katalog der Modernisierung v. Objekten aus 50er 3.12 und 60er Jahren"

Tab. 15: Hervorzuhebendes im Projekt "Katalog der Modernisierung Fassaden- und Freiflächenmodernisierung mit standardisierten Elementen bei Geschosswohnbauten der fünfziger und sechziger Jahre"

Inhalt	Seite
Baukonstruktionen / Sanierung	
338: Fenstertypologien der Jahre 1948-1964 im Wiener Geschoß-	117
wohnbau	
Lüftung	
339: Lüftungsanlagen in Wiener Sanierungskonzepten: Drei	57
Konzepte für die Nachrüstung von Lüftungsanlagen in typischen	
Grundrissen von Wiener Wohnungen der 50er Jahre.	
340: Sanierungskonzept mit außenliegenden Lüftungskanälen:	59
Konzept für die Nachrüstung von Lüftungsanlagen mit	
Wärmerückgewinnung mit Zuluftkanälen, die an die Fassade in	
die Wärmedämmung integriert montiert werden. Abluftführung in	
leeren Kaminschächten.	
341: Einfluß der Überdämmung der Fensterlaibungen: Beispiel von	109
Sanierungsvarianten, gerechnet mit Archiphysik. Überdämmung	
der Fensterlaibungen bewirkt ca. 10% weniger Einstrahlungsfläche	
(abhängig von Dämmstärke).	
342: Beschreibung des "Lüftungsflügelfensters" (Kastenfenster, bei	153
dem der obere Teil eines der äußeren Flügel gekippt werden kann).	
Sonstiges	
343: Wohnbauweise in den 50er und 60er Jahren in Wien: Guter	30
Uberblick über die Wohnbauweise der 1950er und 60er Jahre in	
Wien, den ihr zugrundeliegenden Zustand der Gesellschaft und die	
Motivation, in der damals üblichen Weise zu bauen.	
344: Beschreibung typischer Wiener Wohnungen der 50er und	35
60er: Darstellung typischer Wiener Wohnungsgrundrißtypen	
und Haustechnikkonzepte (Lüftung, Heizung u. Warmwasser,	
Schallschutzkonzepte) der 50er und 60er.)	
345: Kleiner Abriss zur Geschichte der öst. Schallschutznormung.	37
346: Kleiner Abriss zur Geschichte der öst. Wärmeschutznormung.	38
347: Kleiner Abriss zur Geschichte der Wiener Wohnbauförderung.	47
Gute Darstellung der Ursachen, warum es meist zu wenig innovativ-	
en Sanierungen kommt. Erklärung der Begriffe "Sockelsanierung",	
"Totalsanierung", "Thewosan".	
348: Literatur zum Wiener Wohnbau: Viele Angaben, unter an-	187
derem: Marchart, Peter: "Der Wohnbau der Stadt Wien nach 1945",	
Dissertation, Wien, 1982.	

Pr. "Neue Standards für alte Häuser" 3.13

Tab. 16: Hervorzuhebendes im Projekt "Neue Standards für alte Häuser Nachhaltige Sanierungskonzepte für Einfamilienhaus- Siedlungen der Zwischen- und Nachkriegszeit".

Inhalt	Seite
Baukonstruktionen / Sanierung	
349: Der Energiebedarf der bestehenden unsanierten Siedlung-	5
shäuser dieser Periode kann auf den heutigen Standard eines	
Neubaus (70-85 kWh/m ² a) bzw. auf den eines Niedrigenergiehaus-	
es ($<40 \text{ kWh/m}^2$,a) gebracht werden.	
Lüftung	
350: Der Einbau einer Lüftungsanlage bringt nach Ausschöpfung	5
sonstiger Maßnahmen nur mehr eine weitere Einsparung im Aus-	
maß von etwa 5%.	
Sonstiges	
351: Darstellung von 4 Stufen der Altbausanierung an einem	47
konkreten Sanierungsobjekt. In jeder Stufe drei Realisierungsvari-	
anten: moderat/engagiert/ambitioniert	

Pr. "San. Pettenbach" 3.14

Tab. 17: Hervorzuhebendes im Projekt "Erstes Einfamilien-Passivhaus im Altbau"

Inhalt	Seite
Baukonstruktionen / Sanierung	
352: Möglichst hoher Vorfertigungsgrad: Sowohl im Fassaden- als	65
auch im Dachbereich kamen vorgefertigte Holzriegelelemente zum	
Einsatz, welche im Bereich des Erdgeschoßes der bestehenden Fas-	
sade vorgehängt wurden. Die Zellulose-Wärmedämmung wurde auf	
der Baustelle eingeblasen, Spalten zwischen den Stehern und dem	
Mauerwerk mit Mineralwolle ausgestopft.	
353: Wärmebrückenminimierung: Um eine Minimierung der	66
Wärmebrücken in den vorgefertigten Holzriegelelementen zu erzie-	
len, kamen keine durchgehenden Rippen sondern ein Raster	
aus kreuzweise angeordneten Rippen zum Einsatz. Um die	
Wärmedämmung an die Unebenheiten und Fugen des Bestandes	
anpassen zu können, wurde eine Einblasdämmung vor Ort	
ausgeführt. Aus ökologischen Gründen Entscheidung für Zellu-	
losedämmung.	
354: Schirmdämmung: Im Bereich des aufgehenden Mauerw-	85
erks kam eine sogenannte "Schirmdämmung" zum Einsatz. Die	
Wärmebrückenwirkung wird dadurch im Vergleich zu einer Sock-	
eldämmung ohne Schirm reduziert.	
355: Isothermenbild des Bereichs, in dem Schirmdämmung eingeset-	87
zt wurde	

Tab. 17: Hervorzuhebendes im Projekt "Erstes Einfamilien-Passivhaus im Altbau" - Fortsetzung.

Inhalt	Seite
356: Untersuchung Befestigungsoptionen für die vorgehängten Fas-	69
sadenelemente: Spreizanker, Klebeanker, Klebung.	
357: Neuentwickelte Befestigungstechnik: Zweigeteiltes Befesti-	70
gungsmittel wird im Bestand mittels Klebeanker fixiert und verfügt	
über eine U-förmige Einhängemöglichkeit. Der zweite Teil des Be-	
festigungsmittels wird am Element fixiert (mittels Verschraubung)	
und verfügt über einen U-förmigen Aufhängeteil.	
358: Montageablauf Fassade Erdgeschoß	72
359: Entwicklungen im HdZ-Projekt "Schulsanierung Schwanen-	31
stadt" dienten als Vorbild für vorgefertigte Elemente	
360: Erneuerung luftdichte Ebene: Aufgrund des schlechten Zus-	64
tands des Putzes und der vielen Elektroschlitze wurden sämtliche	
Innenwand- und Deckenflächen neu verputzt, um die luftdichte	
Ebene innen herzustellen	
361: Fußbodendämmung: Bestehende 5-8 cm unbewehrte Boden-	79
platte und Erdreich darunter abgetragen. In diesem Bereich kon-	
ventionelle Fußbodendämmung (Distanzbodensystem, 32 cm Min-	
eralwolle)	
362: Zertifizierung: Zertifizierung nach einer "Beta-Version" des	35
klima:aktiv-Kriterienkatalogs	
363: Im unterkellerten Bereich Entscheidung für den Einsatz einer	82
Vakuumdämmung aufgrund geringer zur Verfügung stehender Auf-	
bauhöhe.	
364: Verlegetechnik Vakuumdämmung: Verwendung von Standard-	82
formaten bei den Vakuumisolationspaneelen (VIP), Randbereich	
mit EPS-Platten ausgefüllt, darüber überlappend Überdeckung mit	
VIP.	
365: Angabe des Schichtaufbaus in Bereichen, in denen Vaku-	81
umdämmung verwendet wurde.	
366: Schaumglas: Alle neu errichteten Innenwände und der Stiege-	88
naufgang im Erdgeschoß wurden auf Thermofüße aus Schaumglas	
aufgesetzt.	
367: Kellerabgang - thermisch luftdichte Trennung: Zu beachten,	94
falls Keller außerhalb der thermischen Hülle. Lösung im Projekt:	
Stiegenaufgang mit einer 25 cm dicken Holzriegelwand abgeschot-	
tet. Luftdichter Einbau und Anschluss auf der warmen Bauteilseite.	
Decke zum Obergeschoss im Kellerabgang um 35 cm abgehängt und	
gedämmt.	

Tab. 17: Hervorzuhebendes im Projekt "Erstes Einfamilien-Passivhaus im Altbau" - Fortsetzung.

Inhalt	Seite
368: Wärmebrückenfreier und luftdichter Einbau der Fenster:	68
Übergang von der vorgehängten Holzriegelkonstruktion auf das	
bestehende Mauerwerk durch luftdichtes Andichten der Kle-	
bebänder an die Putzlaibungen. Nachträgliche Verkleidung der In-	
nenlaibungen.	
369: Umfassende Luftdichtheitsmessung: Vier Luftdichtheitstests	89
durchgeführt, laufende Verbesserung des Luftdichtheitswerts	
370: Luftdichtheitsmessung und Thermografie simultan: Empfohlen	90
wird, die Luftdichtheitsmessung und die Thermografieaufnahmen	
(innen und außen) gleichzeitig durchzuführen, um Schwachstellen	
bzgl. Luftdichtheit sichtbar zu machen.	
371: Auszüge aus dem Thermografie-Protokoll	91
372: Ökobilanz-Vergleich: Vergleich einer konventionellen	102
Sanierungsvariante (WDVS, 18 cm EPS) mit der tatsächlich	
durchgeführten Variante: Aufgrund des hohen Anteils an	
nachwachsenden Rohstoffen (v.a. Holz) schneidet tatsächlich	
durchgeführte Variante bzgl. der CO ₂ -Bilanz deutlich besser ab	
trotz größerer Bauteilvolumina.	
373: Ökobilanz-Vergleich Neubau - Sanierung: Einsparung Graue	105
Energie (Primärenergieinhalt) bei durchgeführter Sanierung von	
66%. Neubau-Vergleichsvariante: EG in Massivbauweise, OG	
Holzbau. Keine Darstellung eines Vergleichs mit reiner Holzbau-	
Neubauvariante.	100
374: Nutzung der Senkgrubenabwärme bei Frischluft-Vorerwärmung:	108
Das Erdkollektorrohr für die Frischluft-Vorerwärmung wurde di-	
rekt an die Seitenwand der Senkgrube außenseitig entlang an-	
gelegt, und somit die Temperaturdifferenz zwischen Erdreich- und Senkgrubentemperatur für eine zusätzliche Vorwärmung der	
Frischluft ohne Mehraufwand genutzt. Nebenbei ist keine separate	
Künette erforderlich.	
Kosten	
375: Mehrkosten gegenüber Referenzsanierung: Insg. 27%, 16% für	121
Erreichung Passivhausstandard, 11% für ökologische Maßnahmen.	
Kosten aber absolut sehr hoch (1456 Euro/m² Wohnnutzfläche bei	
tatsächlich durchgeführter Sanierung, allerdings großer Zubau)	
Solar	
376: Neuentwicklung großflächig fassadenintegrierter Photo-	116
voltaikanlage. Auch Setzen architektonischer Akzente.	

Pr. "Schiestlhaus" 3.15

Tab. 18: Hervorzuhebendes im Projekt "Schiestlhaus am Hochschwab 2154 m"

Inhalt	Seite
Lüftung	
377: Auslegung Lüftung: Erforderliche Frischluftzufuhr von ca. 12 m³/h/Person angesetzt, um Pettenkoferkriterium von 1000 ppm einzuhalten. Vgl. Wert mit Wert von S-House (25m3/h/person) oder dem üblichen Wert von 30m3/h/Person	30
378: Variation des Heizwärmebedarfs aufgrund unterschiedlichen Luftbedarfs bei unterschiedlicher Belegungsdichte: Der Heizwärmebedarf steigt zwar, wenn die internen Gewinne infolge geringer Belegung drastisch reduziert werden, aber der Anstieg fällt deutlich geringer aus, als zu erwarten wäre, weil mit sinkender Belegung auch der Lüftungsbedarf und damit die Lüftungswärmeverluste sinken (Nutzungsszenarios "leer" und "voll").	22
379: Lüftungsgerät für Abwasserreinigungsanlage (ARA) und WC-Anlagen: Das Lüftungsgerät für die ARA und die WC-Anlagen aus hygienischen Gründen als reines Frischluftgerät mit Wärmerohr-Wärmerückgewinnung ausgeführt; Hauptvolumenstrom über die Trockentoilettenlage.	33
380: Trockentoilette und Belüftungssystem: Sämtliche im Betriebsraum aufgestellte Behälter der Trockentoilette sind geruchsdicht verschlossen und werden über eine Belüftungsöffnung in der Außenwand mit Frischluft versorgt. Entlüftung der Behälter sowie des Raumes über Dach. Vgl. ähnliche Lösung im Projekt Tattendorf.	36
381: Lüftungskonzept: Die Küche wurde zur besseren Belüftbarkeit an die Außenfassade gelegt.	19
382: Nennabluft- und Zuluftmenge in Abluftraum unterschiedlich: Da die Küche als Abluftraum auch direkt zuluftversorgt ist, wurde sie mit einer Lüftungsanlage mit einer Nenn-Zuluftmenge von 1.800 m³/h und einer Nenn-Abluftmenge von 2.000 m³/h ausgestattet.	33
383: Küchenlüftungssystem in Küchenablufthaube: Die wichtigsten Komponenten des Küchenlüftungssystems sind in der Küchenablufthaube untergebracht: waschbare Edelstahl-Fettfiltereinsätze, leicht zu reinigender Rohrwärmetauscher (etwa 54% Wirkungsgrad) und Nachheizregister.	33
384: Belüftung von Batterien:: Batterien sind im Keller in einem zwangsbelüfteten Batterieschrank untergebracht.	41
385: Schneesicheres Lüftungsgitter bei der Ansaugung (naheliegend, da Schiestlhaus im alpinen Bereich, Schneesicherheit der Ansaugung aber in Ö generell wichtig) Heiztechnik	32
386: Warmwasser aus dem Pufferspeicher wird in Waschmaschine oder Geschirrspüler eingespeist.	42

Solar

Tab. 18: Hervorzuhebendes im Projekt "Schiestlhaus am Hochschwab 2154 m" – Fortsetzung.

Inhalt	Seite
387: Simulation der thermischen Sonnenenergieanlage mit der Soft-	26
ware "Polysun 3.3".	

3.16 Pr. "Steigerung des Bauvolumens um 500% durch stand. Sanierung"

Tab. 19: Hervorzuhebendes im Projekt "Wege zur Steigerung des Bauvolumens um 500% bei standardisierter thermischer Althaussanierung"

Inhalt	Seite
Lüftung	
388: Ergebnis einer Umfrage: Resultat einer Befragung unter	33
Eigenheimbesitzern von Ein- und Zweifamilienhäusern:	
Hohes Interesse an einer Wohnraumlüftungsanlage mit	
Wärmerückgewinnung mit auffallend vielen Bewohnern dieser	
Häuser mit Atemwegserkrankungen. Der Wunsch nach frischer,	
gesunder Luft war spürbar allgegenwärtig	
389: Eine Lüftungsanlage mit Wärmerückgewinnung sollte erst	33
dann eingebaut werden, wenn die Haushülle (Fassade, Fenster,	
Decke oben und unten) gedämmt und gedichtet ist. Anm. Autor:	
diskussionswürdig.	
390: Besitzer von Lüftungsanlagen, deren energetische Effizienz	35
nicht nachgewiesen werden konnte, wollen auf ihre Anlage nicht	
mehr verzichten.	
Heiztechnik	
391: Ergebnis einer Umfrage: Nachtabsenkungen früher kaum prak-	34
tiziert.	
392: ("da es sich ja gezeigt hatte, dass Zentralheizungen trockene	34
Luft bewirken") $ ightarrow$ Anm. Autor: diskussionswürdig.	
393: Abschätzung zur Sanierung von Althäusern: bei entsprechender	101
Dämmung der Außenhülle, Austausch der Fenster und der Einsatz	
einer kontrollierten Wohnraumlüftung kann der Heizenergiebedarf	
eines Althauses auf rund 40kWh/m² a reduziert werden.	

3.17 Pr. "Das ökologische Passivhaus"

Tab. 20: Hervorzuhebendes im Projekt "Das ökologische Passivhaus"

Inhalt	Seite
Lüftung	•

Tab. 20: Hervorzuhebendes im Projekt "Das ökologische Passivhaus" – Fortsetzung.

Inhalt	Seite
394: Heizen über das Frischluftsystem: Beschreibung der Vari-	49
anten von Warmwasser-Nachheizregistern, also der Nachheizung	43
der Zuluft (oder Abluft vor dem Luft-Luft-Wärmetauscher) durch	
Heißwasser. Unterpunkte: Bauform der Wärmetauscher, Variante	
Wärmebezug über die über Fernwärmeversorgung, über ein Block-	
heizkraftwerk oder über einen Pelletsofen	
	4.6
395: Erörterung der indirekten Beheizung der Zuluft über direk-	46
te Abluft-Erwärmung über Mini-Gasgeräte (Erd- oder Propan-	
gas) und Wärmetauscher. Vorteil: schonende Frischlufterwärmung	
möglich ohne punktuelle Überhitzung an heißen Oberflächen.	
Kombinierbar mit Abluft-Wärmepumpe (eigentlich Fortluft-	
Wärmepumpe, jedenfalls Verdampfer im Fortluftkanal). Zweipunk-	
tregelung (Gasflamme-ein/aus) - vgl. das mit Ablufterwärmung und	
Klappenregelung beim S-House.	
396: Maximale Zuluft-Temperatur zu den Wohnräumen von 50°C.	47
397: Bei Propangasvariante der Aufheizung der Abluft: Gasflaschen	47
müssen außerhalb des Hauses (oder in einem Raum, der nur	
von außen zugänglich ist) aufgestellt werden. 6 Flaschen à 33kg	
Gasfüllung reichen für ein Einfamilienhaus (EFH) während einer	
Heizperiode.	
398: Wörtliche Wiedergabe einer Diskussion im Umfang von drei	52
Seiten zwischen Wolfgang Feist und Hrn. Paul (Inhaber der Fa.	
Paul, die Lüftungsgeräte herstellt) zum Thema Lüftung	
399: Heizen über das Frischluftsystem: Beschreibung der Varianten	50
der Einbindung von Solarthermie	
400: Allgemeine Bemerkungen zur Luft-Nachheizung inkl. Angaben	51
zur Ökonomie und Ökologie (Fokus auf Leistungszahl)	
401: Heizen über das Frischluftsystem: Beschreibung der unter-	50
schiedlichen Varianten von Elektro-Nachheizregistern	
402: Sanierung in Deutschland, Sindelfingen, 1987/88: Wegen sein-	25
er großen Luftdichtheit musste man in diesem Haus ständig fen-	
sterlüften. Der Effekt war, dass die Fenster auch ständig offen	
blieben, weil den Nutzern gezieltes Stoßlüften nicht beizubringen	
war. Erkenntnis: ein so hoher Luftdichtheitsstandard ist nur in	
Kombination mit einem anderen haustechnischen Konzept, der kon-	
trollierten Lüftung, denkbar.	
403: Darstellung des Auswirkung eines relativ starken zusätzlichen	51
Luftwechsels durch Fensterlüftung bei kontrollierter WRL mit	
WRG auf den Jahreseheizwärmebedarfs (aus einem PHI-Band ent-	
nommen)	
Hoistochnik	

Heiztechnik

Tab. 20: Hervorzuhebendes im Projekt "Das ökologische Passivhaus" – Fortsetzung.

Inhalt	Seite
404: Beschreibung der Besonderheiten und der hydraulischen	48
Einbindung von vier Varianten einer Wärmepumpe in Kombi-	
nation mit einer Lüftungsanlage. Die Varianten entziehen der	
Abluft/Fortluft der Lüftungsanlage bzw. der Außenluft (konven-	
tionelle Variante einer Luftwärmepumpe) Wärme. Bezeichnun-	
gen: Abluft-Warmwasser, Abluft-Zuluft, Außenluft-Zuluft -und	
Außenluft-Warmwasser-Wärmepumpe	
Sonstiges	
405: Einsatz von fossilem Gas aus primärenergetischer und	47
ökologischer Sicht für die Nachheizung beim Lüftungsgerät als "sehr	
sinnvoll" bezeichnet. Anm. Autor: diskussionswürdig.	
406: Wohnungskaltwasserzähler: Manfred Bruck schlägt den Ein-	8
bau von Wohnungswasserzählern vor, die eine verbrauchsbezogene	
Abrechnung der Kaltwassergebühren erlauben.	

Pr. "San. Makartstraße"

Tab. 21: Hervorzuhebendes im Projekt "Erstes Mehrfamilien-Passivhaus im Altbau

Inhalt	Seite
Baukonstruktionen / Sanierung	
407: Einsatz von Solarwaben-Fassadenpaneelen der Firma Gap-	36
Solar, welche in vorgefertigte Holzwandelemente integriert sind.	
Kernstück dieser Fassadenpaneele ist eine spezielle Wabe, welche	
Sonnenstrahlung absorbiert und dadurch die Temperatur an der	
Außenseite der Fassade anhebt.	
408: Die vorgefertigten Holzwandelemente (mit integrierter Solarwaben-Fassadenpaneelen) wurden in großflächigen Fertigteilen geliefert und montiert. Darin integriert befinden sich die Fenster mit integriertem Sonnenschutz, die Luftkanalführung und die notwendigen E-Leitungen. Ein Element hat die Dimension einer Wohnungsbreite und einer Geschoßhöhe. Aufgrund der Verwendung dieser vorgefertigten Elemente war nur ein sehr geringer Eingriff in den Wohnungsverband notwendig.	35
409: Vorteile der vorgefertigten Holzwandelemente: Reduktion der Bauzeit, Erhöhung der Qualität durch strenge werkseitige Qualitätskontrolle, gerüstlose Montage mit minimiertem Zeitaufwand und damit minimierter Benutzerbeeinträchtigung (stark reduzierte Lärm- und Staubemissionen, stark reduzierte Unfallgefahr, minimierter Lagerflächenbedarf, keine Beeinträchtigung der Sichtverhältnisse durch Gerüstung, Schutznetz und dergleichen)	37

Tab. 21: Hervorzuhebendes im Projekt "Erstes Mehrfamilien-Passivhaus im Altbau "- Fortsetzung.

Inhalt	Seite
410: Untersuchungen der Solarwabenfassade: Die spezifischen Eigen-	45
schaften der Solarwabenfassade wurden bereits vor der Planung der	
Sanierung vom ITW- Stuttgart in einer Feldmessung untersucht	
und veröffentlicht. Das PHI entwickelte aus diesen Untersuchungen	
eine Vorgabe für den Einsatz der Solarwabenfassade im PHPP	
411: Anbringung der Befestigungsanker (für Befestigung der vorge-	37
fertigten Fassadenelemente) nur im Deckenbereich möglich. Wand	
zu porös, Untersuchung des Wandaufbaus wurde durchgeführt.	
412: Einhausung und Vergrößerung der Balkone, dadurch auch	41
Reduktion der Lärmbelastung. Benutzbarkeit der eingehausten	
Balkone als neuer Wohnraum möglich (Balkone vor Sanierung	
auf Straßenseite ungenutzt), Vergrößerung der Wohnfläche (von	
2.755,68 m ² auf 3.106,11 m ²) erhöht. Die verglasten Balkone bilden	
eine warme Pufferzone, sodass keine Notwendigkeit bestand, die	
bestehenden Balkontüren auszutauschen.	
413: Komforterhöhung: Die erforderliche Be- und Entlüftung der	25
Wohnungen durch das Öffnen der Fenster zur Makartstraße war auf-	
grund der starken Lärm- und Schmutzentwicklung ebenfalls beein-	
trächtigt.	
414: Aus baurechtlichen Gründen musste von einer Stiegen-	41
hausdämmung (Wärmedämmung der Wohnungstrennwände zum	11
Stiegenhaus) abgesehen werden, da eine Minimalbreite von 1.20 m	
nicht unterschritten werden darf. Daher wurde das ganze Stiegen-	
haus in die warme Hülle eingebunden.	
415: Passivhausfenster mit integriertem Sonnenschutz, Dreifachver-	28
glasung, U _W =0,86 W/(m ² ·K), äußerste Fensterscheibe Aktivbeschich-	
tung mit Selbstreinigungsfunktion.	
416: Details: Vertikalschnittzeichnung zu Gebäudekomplex samt	33
Balkoneinhausung	
417: Details: Fensteranschlüsse	34
418: Details: Fassadenschnitt Elementstöße	35
419: Luftdichtheitswert n=0,6 nicht erreicht. Gründe: Kaminzüge	59
mit Putztürchen, Elektroverrohrungen, Durchführungen zu Keller	
und Dachboden	
420: Verbrauchsauswertungen der ersten Heizperiode (2006/07)	61
liegen vor	- -
421: überdimensionierte Wärmeverteilung, trotzdem geringer Ver-	62
brauch (aber auch milder Winter 06/07)	~ —
422: persönliche Einschulung	57
423: keine monatlichen Mehrbelastungen für Mieter	58
Haistachnik	

Heiztechnik

Tab. 21: Hervorzuhebendes im Projekt "Erstes Mehrfamilien-Passivhaus im Altbau " – Fortsetzung.

Inhalt	Seite
424: Vorteil des Belassens der bestehenden Heizung: größere Akzep-	57
tanz bei Mietern (vorwiegend Senioren)	
425: Entscheidung, Gas-Durchlauferhitzer durch Fernwärme-	56
Durchlauferhitzer auszutauschen	
Lüftung	
426: Wahl des Lüftungsprinzips: Verglichen wurde eine "semizen-	51
trale" Variante (zwei Geräte für jeweils 25 WE, wohnungsexternes	
und wohnungsinternes Luftverteilnetz) und eine dezentrale Vari-	
ante (mehrere Einzelraumgeräte pro Wohnung). Vergleichskrite-	
rien: Preis, Umsetzbarkeit. Entscheidung für dezentrale Variante	
aufgrund leichterer Umsetzbarkeit,	
427: Gerätemarktanalyse wurde durchgeführt (hinsichtlich Funk-	53
tionalität, Bedienerfreundlichkeit, Wartungsaufwand, Herstellungs-	
und Betriebskosten). Geräte der Firma InVENTer und Meltem	
(Einzelraumgeräte) und Lüfta (semizentrale Var.) wurden unter-	
sucht.	
428: Bewertung dezentrales Lüftungssystem: Entfall Luftverteilnetz,	63
keine baulichen Eingriffe in den Wohnungen, bessere Regelbarkeit	
durch raumweise Regelung, einfach zu handhabender Filterwechsel,	
Reinigung der Lüftungskanäle entfällt	
429: Die Filterwechsel werden von GIWOG Objektbetreuern	63
durchgeführt	
430: Diskussion raumluftabhängige Gas-Durchlauferhitzer (zur	55
Warmwasserbereitung) in luftdichten Wohnungen	
Kosten	
431: Mehrkosten zur Erreichung des Passivhausstandards ca. 27%,	58
Mehrkosten für PH-Standard und ökologische Maßnahmen 30%	

Pr. "PH-Kindergarten Ziersdorf" 3.19

Projekt ,, PassivhauskindergartenTab. 22: Hervorzuhebendes mit heilpädagogischer Integrationsgruppe"

Inhalt	Seite
432: Für die Auslegung der Heizlast mittels PHPP2002 zeigt sich bei	107
Simulation eines ununterbrochenen Betriebs eine ca. 10%ige Ver-	
minderung im Vergleich zur TRNSYS-Heizlastberechnung	
433: Einsatz PHI-zertifizierter Fenster	101

Pr. "Tattendorf" 3.20

Tab. 23: Hervorzuhebendes im Projekt "Lehm- Passiv Bürohaus Tattendorf"

Inhalt	Seite
Lüftung	
434: Quelllüftung mit Überströmöffnungen in den Oberlichten im	44
Deckenbereich und Luftauslässen im Bodenbereich. Raumweise Zu-	
lufteinregulierung mit Schiebern.	
435: Einsatz schalldämpfender Überströmöffnungen	44
436: Minimierung statisch aufladbarer Oberflächen im Innenraum	39
und in den Zuluftkanälen als Planungsrichtlinie.	
437: Zuluftführung für die meisten Räume in Lehm-	40
Röhrenziegelkanälen und/oder innerhalb von Lehm-	
Zwischenwänden	
438: Zuluftnachheizung: nicht über konventionelle Register sondern	43
im "Lehm- PH Konzept": über individuell regelbare flexible Lehm-	
Paneele mit Warmwasser aus dem Solarspeicher. Zuluftführung	
in waagrechten, versetzt verlegten Lehmröhrenziegelkanälen und	
in senkrechten, hohlen Wänden aus n&l (Natur & Lehm) Schilf-	
Lehmplatten. Mit diesem Konzept sollen mögliche, leichte Zug-	
Erscheinungen an den wenigen Nachheiztagen vermieden werden.	
439: Für den zeitweiligen Spitzenlastbetrieb (z.B. Abhalten	43
eines Seminars) wird ein zweites Lüftungsgerät mit geringerer	
Wärmerückgewinnungsrate eingesetzt	
440: Lehmkanäle für die Zuluft wirken als Wärmetauscher für die	40
Zuluft	
441: Möglichkeit einer Luftnachheizung über Bioäthanol	44
442: Einsatz eines wärmeleitenden Lehmestrichs in "Bio-	44
faserlehmtechnik" auf der Lehmröhrenziegellage, um guten	
Wärmeübergang zwischen der in den Lehmröhren geführten Zuluft	
und der Raumluft zu schaffen.	
443: Alle WC-Muscheln im Haus direkt an das Abluftsystem über	44
die Spülkästen angeschlossen. Keine "WC-Duftsteine" nötig.	
444: Detaillierte Beschreibung des Konzepts zur Abluftführung	44
445: Lehmputz-Wandflächen sind luftdichter als mit Kalkputz ver-	50
putzte Flächen (Prüfung der flächigen Luftdurchlässigkeit im ehe-	
maligen arsenal research durchgeführt.)	
446: Nutzung von Brunnenwasser zur Lufterwärmung/-kühlung:	57
Der der Südfassade vorgelagerte Teich wird von Brunnenwasser	
gespeist, das vorher im Wärmetauscher im Installationsschacht	
die Zuluft im Sommer gekühlt hat, bzw. in der Heizperiode	
vorgewärmt. Das eingespeiste Wasser kann in einer Sumpfzone am	
Teichrand wieder versickern.	

Tab. 23: Hervorzuhebendes im Projekt "Lehm- Passiv Bürohaus Tattendorf" – Fortsetzung.

Inhalt	\mathbf{Seite}
447: Unbeachteter Vorteil, wenn Raumluftfeuchte im Winter zwis-	37
chen 40% und 60% bzw. ausreichend hoch gehalten werden kann:	
die Wärmeverluste des menschlichen Körpers zur ständigen Be-	
feuchtung der eingeatmeten Luft auf 100% Luftfeuchte werden um-	
so geringer, je höher die relative Luftfeuchte im Raum ist.	
448: Maßnahmenliste zur Minimierung der Luftstaubbelastung	38
449: Abluftabsaugung gezielt beim Kopiergerät (Reduktion der In-	38
nenraumbelastung hinsichtlich Ozon und Feinstaub)	
450: Zur Vermeidung von Rest-Ozon im Bürobereich wurde der	44
Standort des Kopiergeräts in die Aula hinausverlegt.	
451: Passive Maßnahmen zur Stabilisierung der Raumluftfeuchte: a)	37
Ausbildung der Innenoberflächen zum größten Teil als kapillar wirk-	
ende Lehmputzflächen. Können daher Luftfeuchte-Spitzenwerte	
über Wochen abpuffern. b) geeignete Zimmerpflanzen, insbesondere	
Zyperngras	
452: Einsatz eines Lüftungsgeräts für den Grundlastbetrieb mit	37
Wärme- und Feuchterückgewinnung aus der Abluft (Hoval Home	
Vent 250)	
453: Vermeidung von Schadstoffimmissionen in das Haus aus der	41
Altlast und aus dem Austritt von natürlichem Radon durch die	
Hinterlüftung der Bodenplattform.	
454: Bewußt keine Nachheizung der Zuluft zur Vermeidung der	38
bekannten, negativen Folgen.	
455: Kriterium Mengenverhältnis der negativen Kleinionen zu posi-	39
tiven Großionen in Beurteilung der Raumluftqualität einbezogen	
456: Außenluftansaugung an der von der Straße abgewandten	42
Südseite des Gebäudes nach Fertigstellung des Feuchtbiotops über	
der Wasseroberfläche. Ziel ist die Ansaugung im Bereich ger-	
ingstmöglicher Staubbelastung und maximaler Konzentration neg-	
ativer Kleinionen.	

Tab. 23: Hervorzuhebendes im Projekt "Lehm- Passiv Bürohaus Tattendorf" – Fortsetzung.

Inhalt	Seite
457: Nutzung der Wärmekapazität des Erdreichs über	42
wasserführende Rohre ("Erdreich-Rohrregister") im Erdreich	
und Abgabe der Wärme an die Frischluft über Wasser/Luft	
Wärmetauscher (entspricht der Variante "Sole-Wärmetauscher").	
Nordseitiges Erdreich-Rohrregister wurde in der Kanal-Künette	
rund um das Abwasserrohr gewickelt \rightarrow bescheidenes Ausnutzen	
der Abwärme des Abwasserrohrs sowie Einsparung separater	
Erdarbeiten. Das zweite Rohrregister wurde auf der Südseite unter	
dem neuangelegten Feuchtbiotop verlegt. Erwartet wurde, daß diese	
Variante des Wärmetauschs mit dem Erdreich über wasserführende	
Rohre energieeffizienter als ein 'konventioneller' luftführender Er-	
dreichwärmetauscher ist. Weiterer Vorteil: geringeres Restrisiko	
im Bereich Luft-Hygiene infolge von Kondensatausfall im Sommer	
und bei mangelhafter Wartung (wie bei Solewärmetauscher)	
458: Vermeidung von Zugluft - Erscheinungen durch PH-	40
Planungsstandard; z.B. durch vertikal versetzte Anordnung der	
Fenster in der zweigeschossigen Eingangshalle	
Heiztechnik	
459: In die Mittelwand wurden Register eingebaut die wechselweise	36
auch mit Kaltwasser aus dem Brunnen durchströmt werden können.	
460: Testprogramm mit gekühltem Wasser vorgesehen, mit dem das	36
hinsichtlich Kondensatausfall bei Flächenkühlungen günstigere Ver-	
halten echter Lehmputzoberflächen ermittelt werden soll.	
461: Untersuchung mit dem Ziel nachzuweisen, dass Kondensa-	45
tausfall beim sommerlichen Kühlbetrieb an Lehmputzoberflächen	
mit hoher Sorptions- und Desorptionsleistung grundsätzlich erst	
bei niedrigeren Vorlauftemperaturen als bei konventionellen Putze	
auftritt. Absicht: bei Einsatz von Lehmputz zur Bedeckung von	
Flächenkühlsystemen mit niedrigeren Vorlauftemperaturen und	
damit kleineren Registerflächen das Auslangen finden.	
462: Einsatz eines Stückholzkessels, der mit "Industrie-Restholz"	45
beschickt wird. Aufstellungsort frostsicher im Bereich des Wind-	
fangs. Durch Wahl des Aufstellortes Reduktion der Problematik der	
Luftdichtheit und Brandbeständigkeit bei den Rohrdurchführungen	
sowie der Problematik der Stillstandsverluste von Kaminanlagen in	
Passivhäusern.	
463: Im Erdgeschoß war eine minimale Beheizung der raumhohen	40
Fensterlaibungen nicht rechtzeitig eingeplant worden. Sie konnte	
daher nicht mehr ausgeführt werden.	

 $Baukonstruktionen \ / \ Sanierung$

Tab. 23: Hervorzuhebendes im Projekt "Lehm- Passiv Bürohaus Tattendorf" – Fortsetzung.

Inhalt	Seite
464: Neu entwickelte Lehm-Vliestechnik ersetzt in der Außenwand	49
die herkömmliche Dampfbremse. Aufbau: Lehm-Vliesschicht, da-	
rauf der "Biofaserlehm". Vorteil: Wasserdampf kann stärker aus der	
Wand in den Raum rückdiffundieren. Die kapillare Transportleis-	
tung kann voll genutzt werden und wird durch keine Folie behindert.	
Ergebnis aber aufgrund der großen Qualitätsunterschiede zwischen	
den am Markt befindlichen Lehmbaustoffen nicht verallgemeiner-	
bar.	
465: Plattformmodule aus Stroh und Holz für das Fundament ge-	48
plant - vorgesehen war also ein stahlbetonfreies Fundament. Let-	
ztendlich aber doch stahlbewehrte Streifenfundamente aufgrund	
unerwarteter Bodenstruktur.	
Solar	
466: Solarthermie: Einsatz eines Fassadenkollektors mit Holzrahmen	45

Tab. 24: Hervorzuhebendes im Projekt "Begleituntersuchungen zum Projekt Lehmhaus Tattendorf"

Inhalt	Seite
467: Die Raumtemperaturen im Passiv-Bürohaus Tattendorf liegen	7
während der Heizperiode vereinzelt unter dem behaglichen Bereich,	
im Sommer werden Temperaturen von über 28°C erreicht. In den er-	
sten beiden Messjahren wurde die Möglichkeit der Nachtabsenkung	
mittels Fensterlüftung zum Schutz gegen sommerliche Überhitzung	
aus versicherungstechnischen Gründen nicht genutzt.	
468: Vor allem an strahlungsärmeren Tagen lagen die Temperaturen	8
morgens zu Büroöffnung des Öfteren unter 20°C. Durch passiv	
solare Gewinne stieg die Temperatur im Laufe des Tages allerd-	
ings meist recht schnell wieder über die Behaglichkeitsschwelle von	
20°C. Wenn nötig, wurde aber auch in einigen Räumen mit Elektro-	
Radiatoren nachgeheizt.	
469: Die relative Raumfeuchte bewegt sich mit Werten zwis-	8
chen 35% und 60% innerhalb der Behaglichkeitsgrenzen gemäß	
ÖNORM EN 13779. Auch während der Monate Oktober bis	
Juni lag die Raumluftfeuchte meist um die 40%. Die guten	
Werte sind vor allem durch den Einsatz des Lüftungsgerätes	
mit Wärme- und Feuchterückgewinnung zu erklären. Im Vergle-	
ich zu anderen Gebäuden mit mechanischer Lüftung und rein-	
er Wärmerückgewinnung schneidet dieses Konzept deutlich besser	
ab. (Anmerkung: nicht erwähnt ist im Bericht der wahrscheinlich	
ebenfalls positive Effekt der Lehm-Innenwände auf die Raumluft-	
feuchte.)	

Tab. 24: Hervorzuhebendes im Projekt "Begleituntersuchungen zum Projekt Lehmhaus Tattendorf" – Fortsetzung.

Inhalt	Seite
470: Die CO ₂ -Konzentrationen liegen (während der Bürozeiten)	9
meist unter dem Pettenkofer Wert (1500 ppm).	
471: Alle gemäß Passivhaus-Institut geforderten Grenzwerte können	10
eingehalten werden: Deutlich werden Heizwärmebedarf (max. 9,1	
$ kWh/m^2 a \rangle$ und Heizlast (max. 5,2 W/m ²) im Vergleich zu	
den Vorgaben unterschritten. Auch der Primärenergiebedarf (bzw.	
eigentlich -verbrauch) liegt mit max. 106 kWh/m ² a unter dem	
geforderten Grenzwert von 120 kWh/m ² a.	
472: Während der Weihnachtsfeiertage 2007/2008 kühlte das	11
Gebäude trotz Außentemperaturen unter 0 Grad auf minimal 10	
Grad ab. Aufgrund des hohen Dämmstandards und allein durch	
geringe passiv solare Gewinne stabilisiert sich die Innenraumtem-	
peratur nach wenigen Tagen bei etwa 10°C.	
473: Während des gesamten Abkühlvorganges blieb die relative	12
Feuchte innerhalb des Gebäudes konstant. Aufgrund der sehr dicht-	
en Gebäudehülle kann der Anteil der abtransportierten Feuchte	
nur einen kleinen Teil ausmachen und der Großteil wird vom	
Lehm-Verbundwerkstoff zwischengepuffert. Diese Puffereigenschaft	
wirkt feuchteregulierend und trägt somit zusätzlich zu einem be-	
haglichen Innenraumklima bei. Innerhalb eines Zeitraums von	
12 Tagen (22.12.2007 bis 02.01.2008) wurden insgesamt 3,635 g	
Wasserdampf/m ³ Luft durch den Lehmbaustoff aufgenommen.	

\Pr . "San. Schwanenstadt" 3.21

Tab. 25: Hervorzuhebendes im Projekt "Erste Passivhaus -Schulsanierung"

Inhalt	Seite
474: Heizwärme- und Primärenergiebedarf gemäß Passivhausgren-	8
zwerten um 90% geringer als Bestand und ca. 75% geringer als	
bei einer konventionellen Sanierung. Geringer Energiebedarf in der	
Gebäudeherstellung durch die Verwendung von Holzleichtbauele-	
menten und durch bauökologische Optimierung.	
475: Erste Passivhaussanierung eines öffentlichen Gebäudes.	8
476: Einbeziehung von Schülern in eine der Gesprächsrunden, um	19
auch die Meinungen und Wünsche der betroffenen Schüler über ihre	
Vorstellungen einer Schulsanierung und Bedarfsanalyse zu erfahren.	

Tab. 25: Hervorzuhebendes im Projekt "Erste Passivhaus -Schulsanierung" – Fortsetzung.

Inhalt	Seite
477: Um die geplante Fassadenkonstruktion wärmebrückenfrei zu	32
konstruieren, wird die vor der Fassade stehende Stahlbetonsäule	
überdämmt, sodass die gesamte Fassade mit den Fensterbändern in	
einer Ebene vor den Säulen vorbeigeführt wird. Damit ergibt sich	
eine Dämmstärke von 50 cm mit einem U-Wert 0,08 W/m ² K und	
über eine Achslänge von 5,0 m mit eingebundener Stahlbetonsäule	
als Wärmebrücke ein gemittelter U-Wert von 0,10 W/m ² K.	
478: Die bestehende Betonbrüstung eignet sich als Dampfbremse;	55
die vorgesetzte Fassade selbst wird vergleichsweise diffusionsoffen	
ausgeführt. Die Erfordernis einer zusätzlichen Dampfsperre entfällt	
somit. Die Dampfdichtigkeit im Sturz- und Parapetbereich wird	
über bituminöse Klebefolien erreicht, welche mittels Voranstrich	
an den bestehenden Betonbrüstungen fixiert werden. Durch die	
Abdeckung mit zweilagigen Gipskarton- Feuerschutzplatten beste-	
ht in brandschutztechnischer Hinsicht gegen die Klebefolien seitens	
der BVS Linz kein Einwand. Die außenseitige Winddichtigkeit wird	
über die geringfügige Verzahnung in der Holzschalung bzw. über	
den Dünnschichtputz erreicht.	
479: Umstellung des Restheizenergiebedarfes von Erdgas auf	33
Holzpellets	
480: Erhöhung der Kompaktheit des Baukörpers durch Integration	9
des geforderten Zubaus	
481: Öffnung innenliegender Bereiche für die Tageslichtnutzung über	9
Oberlichten	
482: komplett außenseitige Sanierung bzw. Überbauung mit einer	9
passivhaustauglichen und ökologisch hochwertigen Hülle	
483: Keine Verbundwerkstoffe: Bei der Gegenüberstellung der ver-	33
schiedenen Sanierungsvarianten für den Bauteil für die thermis-	
che Außenwandsanierung zeigt sich, dass bei Berücksichtigung ein-	
er ökologischen Bauteilsanierung mit größtenteils nachwachsenden	
Rohstoffen, eine Sanierung auf Passivhausstandard - trotz rund	
sechsfachem Volumen, eine bessere Ökobilanz schon alleine bei der	
Herstellung aufweisen kann, als die heute üblichen konventionellen	
Sanierungsmaßnahmen.	
484: Deckengleicher Unterzug: Dieser ist jedoch aufgrund der gerin-	64
gen Konstruktionsstärke der Holzbetonverbunddecke nicht in Holz	
und somit mit einem nachwachsenden Baustoff ausführbar. Es muss	
auf den Baustoff Stahl zurückgegriffen werden.	

Tab. 25: Hervorzuhebendes im Projekt "Erste Passivhaus -Schulsanierung" – Fortsetzung.

485: Die Raumhöhe im Erdgeschoss beschränkt den Bodenaufbau inklusive Wärmedämmung auf maximal 10 cm. Neben der Dämmung mittels Vakuumdämmplatten wurden auch Trockenestrichlösungen mit Trittschallfilzen aus Schaf- oder Glaswolle angedacht. 486: Bei fließendem Grundwasser kann Passivhausstandard nur mit einer Vakuumdämmung der Bodenplatte erreicht werden 487: Durchdringung der thermischen Hülle durch Stahlbetonstützen: Die Stahlbetonstützen durchdringen die thermische Hülle im Randbereich der Bodenplatten und gründen im Grundwasser. 488: Für die thermische Schwachstelle direkt an den Stahlbetonpfosten wurden die folgenden Maßnahmen angedacht: 1. Überdämmung mit Vakuumplatten 2. Überdämmung mit Faserdämmstoffen niedriger Wärmeleitfähigkeit (z.B. Schafwolle- oder Glaswolle- Trittschallfilze) 3. Erhöhung der Gesamtdämmstärke 489: Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang gegenüber Vakuumdämmung.	Inhalt	Seite
Dämmung mittels Vakuumdämmplatten wurden auch Trockenestrichlösungen mit Trittschallfilzen aus Schaf- oder Glaswolle angedacht. 486: Bei fließendem Grundwasser kann Passivhausstandard nur mit einer Vakuumdämmung der Bodenplatte erreicht werden 487: Durchdringung der thermischen Hülle durch Stahlbetonstützen: Die Stahlbetonstützen durchdringen die thermische Hülle im Randbereich der Bodenplatten und gründen im Grundwasser. 488: Für die thermische Schwachstelle direkt an den Stahlbetonpfosten wurden die folgenden Maßnahmen angedacht: 1. Überdämmung mit Vakuumplatten 2. Überdämmung mit Faserdämmstoffen niedriger Wärmeleitfähigkeit (z.B. Schafwolle- oder Glaswolle- Trittschallfilze) 3. Erhöhung der Gesamtdämmstärke 489: Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang		83
estrichlösungen mit Trittschallfilzen aus Schaf- oder Glaswolle angedacht. 486: Bei fließendem Grundwasser kann Passivhausstandard nur mit einer Vakuumdämmung der Bodenplatte erreicht werden 487: Durchdringung der thermischen Hülle durch Stahlbetonstützen: Die Stahlbetonstützen durchdringen die thermische Hülle im Randbereich der Bodenplatten und gründen im Grundwasser. 488: Für die thermische Schwachstelle direkt an den Stahlbetonpfosten wurden die folgenden Maßnahmen angedacht: 1. Überdämmung mit Vakuumplatten 2. Überdämmung mit Faserdämmstoffen niedriger Wärmeleitfähigkeit (z.B. Schafwolle- oder Glaswolle- Trittschallfilze) 3. Erhöhung der Gesamtdämmstärke 489: Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang		
 angedacht. 486: Bei fließendem Grundwasser kann Passivhausstandard nur mit einer Vakuumdämmung der Bodenplatte erreicht werden 487: Durchdringung der thermischen Hülle durch Stahlbetonstützen: Die Stahlbetonstützen durchdringen die thermische Hülle im Randbereich der Bodenplatten und gründen im Grundwasser. 488: Für die thermische Schwachstelle direkt an den Stahlbetonpfosten wurden die folgenden Maßnahmen angedacht: 1. Überdämmung mit Vakuumplatten 2. Überdämmung mit Faserdämmstoffen niedriger Wärmeleitfähigkeit (z.B. Schafwolle- oder Glaswolle- Trittschallfilze) 3. Erhöhung der Gesamtdämmstärke 489: Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang 		
486: Bei fließendem Grundwasser kann Passivhausstandard nur mit einer Vakuumdämmung der Bodenplatte erreicht werden 487: Durchdringung der thermischen Hülle durch Stahlbetonstützen: Die Stahlbetonstützen durchdringen die thermische Hülle im Randbereich der Bodenplatten und gründen im Grundwasser. 488: Für die thermische Schwachstelle direkt an den Stahlbetonpfosten wurden die folgenden Maßnahmen angedacht: 1. Überdämmung mit Vakuumplatten 2. Überdämmung mit Faserdämmstoffen niedriger Wärmeleitfähigkeit (z.B. Schafwolle- oder Glaswolle- Trittschallfilze) 3. Erhöhung der Gesamtdämmstärke 489: Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang		
einer Vakuumdämmung der Bodenplatte erreicht werden 487: Durchdringung der thermischen Hülle durch Stahlbetonstützen: Die Stahlbetonstützen durchdringen die thermische Hülle im Randbereich der Bodenplatten und gründen im Grundwasser. 488: Für die thermische Schwachstelle direkt an den Stahlbetonpfosten wurden die folgenden Maßnahmen angedacht: 1. Überdämmung mit Vakuumplatten 2. Überdämmung mit Faserdämmstoffen niedriger Wärmeleitfähigkeit (z.B. Schafwolle- oder Glaswolle- Trittschallfilze) 3. Erhöhung der Gesamtdämmstärke 489: Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang		
487: Durchdringung der thermischen Hülle durch Stahlbetonstützen: Die Stahlbetonstützen durchdringen die thermische Hülle im Randbereich der Bodenplatten und gründen im Grundwasser. 488: Für die thermische Schwachstelle direkt an den Stahlbetonpfosten wurden die folgenden Maßnahmen angedacht: 1. Überdämmung mit Vakuumplatten 2. Überdämmung mit Faserdämmstoffen niedriger Wärmeleitfähigkeit (z.B. Schafwolle- oder Glaswolle- Trittschallfilze) 3. Erhöhung der Gesamtdämmstärke 489: Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang		84
Die Stahlbetonstützen durchdringen die thermische Hülle im Randbereich der Bodenplatten und gründen im Grundwasser. 488: Für die thermische Schwachstelle direkt an den Stahlbetonpfosten wurden die folgenden Maßnahmen angedacht: 1. Überdämmung mit Vakuumplatten 2. Überdämmung mit Faserdämmstoffen niedriger Wärmeleitfähigkeit (z.B. Schafwolle- oder Glaswolle- Trittschallfilze) 3. Erhöhung der Gesamtdämmstärke 489: Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang		0.0
bereich der Bodenplatten und gründen im Grundwasser. 488: Für die thermische Schwachstelle direkt an den Stahlbetonpfosten wurden die folgenden Maßnahmen angedacht: 1. Überdämmung mit Vakuumplatten 2. Überdämmung mit Faserdämmstoffen niedriger Wärmeleitfähigkeit (z.B. Schafwolle- oder Glaswolle- Trittschallfilze) 3. Erhöhung der Gesamtdämmstärke 489: Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang		86
 488: Für die thermische Schwachstelle direkt an den Stahlbetonpfosten wurden die folgenden Maßnahmen angedacht: 1. Überdämmung mit Vakuumplatten 2. Überdämmung mit Faserdämmstoffen niedriger Wärmeleitfähigkeit (z.B. Schafwolle- oder Glaswolle- Trittschallfilze) 3. Erhöhung der Gesamtdämmstärke 489: Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang 	Ŭ	
ten wurden die folgenden Maßnahmen angedacht: 1. Überdämmung mit Vakuumplatten 2. Überdämmung mit Faserdämmstoffen niedriger Wärmeleitfähigkeit (z.B. Schafwolle- oder Glaswolle- Trittschallfilze) 3. Erhöhung der Gesamtdämmstärke 489: Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang		0.0
 Überdämmung mit Vakuumplatten Überdämmung mit Faserdämmstoffen niedriger Wärmeleitfähigkeit (z.B. Schafwolle- oder Glaswolle- Trittschallfilze) Erhöhung der Gesamtdämmstärke Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang 	-	86
 Überdämmung mit Faserdämmstoffen niedriger Wärmeleitfähigkeit (z.B. Schafwolle- oder Glaswolle- Trittschallfilze) Erhöhung der Gesamtdämmstärke Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang 		
 Wärmeleitfähigkeit (z.B. Schafwolle- oder Glaswolle- Trittschallfilze) 3. Erhöhung der Gesamtdämmstärke 489: Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang 		
 filze) 3. Erhöhung der Gesamtdämmstärke 489: Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang 		
 3. Erhöhung der Gesamtdämmstärke 489: Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang 	• ` `	
 489: Untersuchung per Wärmebrückenberechnung verschiedener Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang 	/	
 Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang 	o. Emonding der Gesamtdammistarke	
 Sanierungsvarianten im Bereich Stahlbetonstützen. Ergebnis: - Mit lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang 	489: Untersuchung per Wärmebrückenberechnung verschiedener	87
 lediglich 2 cm Vakuumdämmplatten bereits ein sehr niedriger Transmissionsleitwert erreichbar. 1. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang 	<u> </u>	
 Transmissionsleitwert erreichbar. 2 cm Dämmstoff λ= 0,033 W/mK (z.B. Schaf- oder Glaswolle Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang 		
 Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang 	_	
 Trittschallfilz) statt Vakuumdämmung → starke Erhöhung des mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang 	1. 2 cm Dämmstoff $\lambda = 0.033$ W/mK (z.B. Schaf- oder Glaswolle	
 mittleren U-Wertes um 22%. 2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "konventionellen" Dämmstoff λ= 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang 		
ventionellen" Dämmstoff λ = 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang	· · · · · · · · · · · · · · · · · · ·	
ventionellen" Dämmstoff λ = 0,033 W/mK bis 0.04 W/mK vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang	2. Aufstockung der Konstruktionsstärke um 3 cm auf 5 cm "kon-	
vor der Stahlbetonstütze nur 2-4% mehr Wärmedurchgang		
490: Zur Gewährleistung der Wärmebrückenfreiheit wird im Bereich 55	490: Zur Gewährleistung der Wärmebrückenfreiheit wird im Bereich	55
der Stützen sowohl seitlich als auch stirnseitig Vakuumdämmung	der Stützen sowohl seitlich als auch stirnseitig Vakuumdämmung	
eingesetzt.		

Tab. 25: Hervorzuhebendes im Projekt "Erste Passivhaus -Schulsanierung" – Fortsetzung.

Inhalt	Seite
491: Schlüsselelement für das Erreichen des nutzenergetischen	109
Passivhauskriteriums einer Heizenergiekennzahl < 15 kWh/m² a	
ist die thermische Sanierung der Bodenplatte. Unter den hohen	
Anforderungen an eine geringe Bodenaufbaustärke der Sanierung	
max. um 8 cm erschien hierbei nur eine Variante mit Vaku-	
umdämmplatten sinnvoll möglich. Je nach Grundwassersituation	
wurden damit Heizenergiekennzahlen zwischen 10.4 und 13.9	
kWh/m² a ermittelt. Die Heizlasten gemäß PHPP liegen mit 11.1	
W/m ² bis 12.5 W/m ² geringfügig über dem Passivhauszielwert von	
10 W/m ² . Bei Verwendung konventioneller Bodendämmung ist die	
Dämmstärke erheblich zu erhöhen und zudem die hydrogeologis-	
che Situation im Detail einzuberechnen, z.B. ergab sich bei 4 cm	
üblicher Bodendämmung und fließendem Grundwasser eine Heizen-	
ergiekennzahl gemäß PHPP von 20.2 kWh/m² a und damit keine	
Passivhaustauglichkeit.	
492: Kapitel 8.6: Gute Einführung zum Thema Vakuumdämmung	123
493: Zu klären ist besonders die thermische Wirkung des nur ca. 50	83
cm unter Niveau liegenden Grundwasserspiegels.	
494: Da bis zum Zeitpunkt der Planung des Gebäudes keine	83
quantitativen Unterlagen zum Grundwasserverhalten vorlagen,	
wurde durch eine Sensitivitätsanalyse die Auswirkung von zwei	
Extremfällen untersucht (Bandbreitenberechnung best case -	
worst case): - Grundwasser ruhend (best case) - Grundwasser	
fließend (worst case): Isotherme Randbedingung unter der Bo-	
denplatte, mittlere Grundwassertemperatur zwischen Jahresdurch-	
schnittstemperatur Außenluft und Durchschnittstemperatur der	
Außenluft während der Heizsaison.	
495: Um PH-Standard zu erreichen, kam für ruhendes Grund-	84
wasser auch eine konventionell gedämmte Bodenplatte mit min-	
destens 4 cm Dämmstärke in Frage. Der resultierende U - Wert	
der Bodenplatte entspräche zwar nicht den Passivhausanforderun-	
gen ("Probleme Zertifizierung?"), es seien aber hinsichtlich Einhal-	
tung der Heizenergiekennzahl $< 15 \text{ kWh/m}^2$ a und thermischem	
Komfort keine größeren Schwierigkeiten zu erwarten gewesen Bei	
fließendem Grundwasser war bei vorgegebener Aufbauhöhe nur eine	
Vakuumdämmung sinnvoll für Passivhaus - Bauweise einsetzbar	
(eventuell in 2 Lagen, Detailkonstruktion wurde zu untersuchen	
empfohlen). Für den Bodenaufbau hinsichtlich Wärme- und Feucht-	
eschutz zusätzlich zu beachten waren die über tragende Wände und	
Säulen entstehenden Wärmebrücken und die entsprechende Gefahr	
der Tauwasserbildung an den Wärmebrücken.	

3.22 Pr. "Sanierung in Schutzzonen"

Tab. 26: Hervorzuhebendes im Projekt "Energetische Sanierung in Schutzzonen"

Inhalt	Seite
496: Analyse zweier Sanierungsobjekte: im Bestand an zahlre-	23
ichen Stellen Innenoberflächentemperaturen von unter 14°C (bis	
zu 9,5°C) errechnet, was zu Kondensat- und in Folge zu Schimmel-	
bildung führen würde.	
497: Befragung (Fragebogenaussendung) an Eigentümer und Ver-	12
walter ortsbild- und denkmalgeschützter Objekte	
498: Abschlagen der 6cm starken Putzschicht und 10cm Dämmputz	23
als Maßnahme empfohlen. Vollwärmeschutz wegen aufsteigender	
Feuchtigkeit abgelehnt, vor allem wegen des unvermeidbar hohen	
Dampfdiffusionswiderstandes der Sockeldämmung. Innendämmung	
aufgrund der Tonnen- und Kreuzgewölbe im Erdgeschoss aus-	
geschlossen. Alleine Dämmputz Aufbringen bewirkt Innenober-	
flächentemperaturen von knapp 14°C im Sockelbereich und	
mehr (bei den anderen kritischen Stellen) sowie Reduktion des	
Heizwärmebedarfs auf knapp unter die Hälfte (112 kWh/m ²).	
499: Kältebereich Toiletten: Im Bestand musste in den Winter-	24
monaten das Wasser durchgehend rinnen, um ein Einfrieren zu ver-	
hindern.	
500: Einsatz von 5cm Calciumsilikatplatten als Innendämmung	24
501: Kurze Darstellung einer Befundung (Analyse) zweier	40
Sanierungsobjekte in Tirol. Entgegen den Befürchtungen des	
Bauherren stellte sich trotz überall gefundener Ausblühungen die	
Durchfeuchtung der Mauern als nicht kritisch heraus. Der geplante	
Abriß wurde verworfen, das Bauherrenbewußtsein stieg. Einzige	
Maßnahme: Dämmung der obersten Geschoßdecke und Umstellung	
auf Gasheizung.	
502: Entwicklung eines neuen Fensters mit echter glasteilender	51
Sprosse, schmalen Rahmenteilen und zwar nur 10mm Scheiben-	
abstand dafür aber Kryptonfüllung \rightarrow U-Wert 1,46 W/m ² K.	
Glasteilflächen bewußt zur Sprosse hin geneigt ausgebildet, um	
ästhetisch einen inhomogenen ziehglasähnlichen Effekt zu erzeugen.	
Herkömmlichen, verkitteten Glasanschlag außen durch lackierbare	
Acrylfuge ersetzt.	
503: Sanierung einer Fassade eines denkmalgeschützten Objektes	56
ohne Wärmedämmmaßnahmen, aber Tausch der bestehenden Ver-	
bundfenster gegen Kastenfenster mit innerem Flügel als neu en-	
twickeltes Fenster. Innendämmung in der Fensterlaibung im Erker-	
bereich, da dort die Wände geschwächt sind und Kondensatprob-	
lematik möglich wäre (Wärmebrückenberechnung: ungedämmt:	
5.5°C Oberflächentemp. bei -15°C Außentemp. gedämmt: auf	
13,7°C erhöht).	

Tab. 26: Hervorzuhebendes im Projekt "Energetische Sanierung in Schutzzonen" – Fortsetzung.

Inhalt	Seite
504: Innendämmung der Heizkörpernischen (bestehende Heizkörper	62
wurden getauscht)	
505: Ausführliche Beschreibung der drei wichtigsten Formen der In-	65
nendämmung: diffusionsoffene Dämmmaterialien mit Dampfsperre,	
dampfdichte Materialien, diffusionsoffene Materialien mit kapil-	
laraktiven Eigenschaften	
506: Kurze Auflistung der Methoden zur Feststellung der Salzbelas-	83
tung von Mauerwerk	
507: 5cm Calciumsilikatplatten als Innendämmung	0

3.23 Pr. "Wandsysteme aus Nawaros"

Tab. 27: Hervorzuhebendes im Projekt "Wandsysteme aus nachwachsenden Rohstoffen"

Qa:4a
Seite
-4
13
17
13
24
21

Tab. 27: Hervorzuhebendes im Projekt "Wandsysteme aus nachwachsenden Rohstoffen" – Fortsetzung.

Inhalt	Seite
514: Da Pilzbefall bei hoher Wasserbelastung vor allem durch Schla-	21
gregen oder bei sehr hohen Einbaufeuchten auftritt, kann er im	
Strohbau mit entsprechenden konstruktiven Lösungen und einer ef-	
fizienten Qualitätskontrolle der Strohballen auch ohne chemischen	
Schutz verhindert werden. Ein geringer Feuchtegehalt ist außer-	
dem notwendig, um die Keimung eventuell eingeschlossener Getrei-	
desamen zu verhindern.	
515: Bedeutung von gleichmäßig verdichtetem Stroh: Unregelmäßige	21
Dichten verschlechtern die Wärmedämmung. Die Dichte spielt auch	
eine Rolle für die Nagetierbeständigkeit des Baustoffs. Nur gle-	
ichmäßig verdichtetes Stroh garantiert einen Schutz vor Mäusen.	
Die erreichbaren Dichten sind abhängig von den verwendeten	
Ballenpressen und liegen zwischen 90 und 180kg/m³. Bei den	
durchgeführten Wärmeleit- und Brandtests wurden Kleinballen mit	
Dichten zwischen 70 und 100kg/m^3 verwendet.	
516: Acht verschiedene Wandaufbauten mit Strohballen wur-	30
den in bauphysikalischer Hinsicht (Wärmeschutz, Feuchteverhal-	
ten und Dampfdiffusion, Luftdichtigkeit, Schallschutz, Brand-	
verhalten) untersucht. Die Aufbauten unterscheiden sich darin,	
ob sie hinterlüftet sind oder nicht, sowie in der innenseitigen	
Ausführung (Gipsfaserplatte, Lehmputz, Hourdisziegel, Lehmbau-	
platten). Lösungsvorschläge für Anschlüsse wurden erarbeitet.	
517: Zusammenfassung technischer Kennwerte (Wärmeleitfähigkeit,	31
Diffusionswiderstand, Brennbarkeitsklasse, Dichte, Spez.	
Wärmekapazität) von Strohballen	
518: Wichtig für die Funktionstüchtigkeit des Bauteils ist der pass-	31
genaue Einbau der Strohballen. Potenzielle Schwachstellen sind die	
zumeist abgerundeten Kanten der Strohballen und die dadurch	
entstehenden durchgängigen Lufträume.	
519: Liste zur Maßnahmen zur Vermeidung von Feuchteschäden	33
520: Dimensionierung der außenseitigen (Winddichheit) und innen-	33
seitigen (Dampfbremse, Luftdichtheit) Dichtungsbahnen: Der sd-	
Wert der inneren Schicht solle mehr als 10-mal so groß wie der	
sd-Wert der äußeren Schicht sein. Der innere sd-Wert sollte aber	
nicht zu groß sein $(< 5 \text{ m})$.	

Tab. 27: Hervorzuhebendes im Projekt "Wandsysteme aus nachwachsenden Rohstoffen" – Fortsetzung.

Inhalt	Seite
521: Allgemeine Aussagen zu den Wandkonstruktionen mit hin-	34
terlüfteter Fassade: Gute Eigenschaften bzgl. Wärmeschutz,	
Feuchteverhalten und Dampfdiffusion (bei sorgfältiger Dimen-	
sionierung und Ausführung der winddichten Schicht) und Luft-	
dichtigkeit. Problematischer bzgl. Schallschutz (der Beitrag der	
äußeren Beplankung zum Schallschutz ist gering. Eine Verbesserung	
könnte durch eine durchgängige Holzschalung oder durch Platten-	
baustoffe erreicht werden.)	
522: Auswahl des Außenputzes für Putzfassaden: Der Außen-	44
putz sollte möglichst diffusionsoffen sein und ausreichend wasser-	
abweisend sein. Geeignet sind Silikat- und Kalk(zement)putze.	
Wenn durch große Dachüberstände, ausreichende Abstände vom	
Spritzwasserbereich (Höhe > 80cm) oder durch eine windgeschützte	
Lage direkte Wassereinwirkung sicher ausgeschlossen werden kann,	
sind auch Lehm- oder der leicht wasserhemmende Trasskalkputz	
geeignet. Der Außenputz muss armiert ausgeführt werden.	
523: Bei den Konstruktionen mit Putzfassade muss dem Dampfd-	52
iffusionsverhalten höhere Aufmerksamkeit im Vergleich zu hin-	02
terlüfteten Fassaden geschenkt werden, da der Dampfdiffusion-	
swiderstand der Putzfassade über demjenigen der hinterlüfteten	
Fassade liegt. Empfohlen wird beim Silikatputz (außen) eine	
Dampfbremse (innen) mit einem sd-Wert von 4.6 m. Von dem Einsatz von Dampfbremsen mit deutlich höheren sd-Werten wird	
abgeraten, da dadurch die Austrocknungskapazität deutlich re-	
duziert wird und im Sommer an der Außenseite der Dampfsperre	
beträchtliche Mengen an Kondensat entstehen können. 524: Anschlußdetails Kellerdecke	52
524: Anschlußdetails Renerdecke 525: Anschlußdetails Pultdach	
	55
526: Anschlußdetails Fenster	58
527: Luftdichtheit bei Durchdringungen (Installationen): Problem-	60
los, falls eigene Installationsebene vorhanden. Für Durchdringun-	
gen, die insgesamt durch die Außenwand führen müssen, können	
2 Fälle unterschieden werden: 1) Die luftdichte Ebene, die durch-	
drungen wird, ist eine Gipsfaserplatte, Putz, Oriented Strand Board	
(OSB)-Platte etc.: In diesem Fall wird ein ausreichend großer Spalt	
zwischen Durchdringung und Platte ausgespart, der mit dauere-	
lastischer Masse geschlossen wird. 2) Die luftdichte Ebene ist eine	
Folie, z.B. Dampfbremse oder Windsperre: Es wird eine Folienman-	
schette hergestellt (für bestimmte Maße auch am Markt erhältlich),	
die mit Hilfe eines Spezialklebebandes mit der Folie und der Durch-	
dringung luftdicht verklebt wird.	

Tab. 27: Hervorzuhebendes im Projekt "Wandsysteme aus nachwachsenden Rohstoffen" – Fortsetzung.

Inhalt	Seite
528: Empfehlung für Lehmputze auf der Innenseite: Lehmputze un-	61
terstützen aufgrund ihrer hydrophilen Eigenschaft die Verteilung	
von Feuchtespitzen auf einen längeren Zeitraum (Lehmputze haben	
bei Fachwerkhäusern das Holz auf lange Zeit derart ausgetrocknet	
und konserviert, dass weder Schädlinge noch Pilze und Mikroor-	
ganismen dem Holz schaden konnten).	
529: Hinweise zu den Dampfdiffusionswiderständen verschiedener	62
Putze und Anstriche	
530: Allergenes Potenzial von Stroh: Aus der Literatur (Gruber,	65
2000) lässt sich entnehmen, dass sauberes, helles Stroh ein äußerst	
geringes allergenes Potenzial besitzt und kaum Schimmelpilze oder	
Sporen enthält. Lediglich schimmelndes Stroh kann für Asthmatiker	
problematisch sein. Sobald die Strohwand verputzt ist, stellt auch	
die Verwendung von Stroh schlechterer Qualität kein Allergiepoten-	
zial mehr dar. Es ist jedoch darauf zu achten, dass nicht durch	
zu feuchtes Verputzen und extrem langsames Trocknen des Ver-	
putzes Schimmelbildung auftritt. Daher sollte besonders in kalten	
oder feuchten Klimazonen bzw. während ebensolcher Jahreszeiten	
zu flüssiger oder übernässter Verputz ebenso wie diffusionsdichter	
Verputz auf nicht hinterlüfteten Strohwänden vermieden werden.	
531: Zellulose (der Rohstoff, aus dem Stroh besteht) kann nur von	65
Termiten verdaut werden. Im Gegensatz zu Heu oder Getreideähren	00
bietet Stroh also keinen besonderen Anziehungspunkt für Klein-	
nagetiere und Insekten aller Art. (Gruber, 2000)	
532: Die Erfahrungen bei der Realisierung aktueller Strohbauten	65
sind, dass während der Bauphase, speziell in der kalten Jahreszeit,	00
Strohballen aufgrund ihrer guten Wärmedämmeigenschaften von	
Mäusen als Behausung aufgesucht werden können. Durchgängige	
Putzschichten oder OSB-, Gipsfaserplatten etc., stellen "biss-	
sichere" Abdeckungen dar, die nach der Fertigstellung des Bauteils	
bzw. des Gebäudes den Nagern ein Eindringen in eventuell vorhan-	
dene Hohlräume nicht mehr ermöglichen und das Problem somit	
eliminieren.	CC
533: Um einem Insektenbefall vorzubeugen, empfiehlt sich: Verun-	66
reinigungen und Beikräuter bei der Ernte möglichst zu vermei-	
den, den Restkorngehalt im Strohballen (durch längeres Dreschen)	
möglichst gering zu halten, das Stroh während Ernte, Lagerung und	
Einbau möglichst trocken zu halten, die Wände nach der Errichtung	
möglichst rasch und vollständig zu verputzen.	

Tab. 27: Hervorzuhebendes im Projekt "Wandsysteme aus nachwachsenden Rohstoffen" – Fortsetzung.

Inhalt	Seite
534: Brandschutz: Damit ein Baustoff aus brandschutztechnisch-	69
er Sicht in eine Außenwand eingebaut werden darf, muss dieser	
mindestens die Anforderungen der Baustoffklasse B2 (normal ent-	
flammbar) erfüllen. Im Zuge des Projekts wurden Brandschutztests	
durchgeführt, in denen die Baustoffklasse B2 für unbehandeltes,	
nicht imprägniertes Weizenstroh sowohl mit einer Rohdichte von	
90 kg/m ³ wie auch von 120 kg/m ³ erreicht wurde.	
535: Bauteil-Brandbeständigkeit: Getestet wurde eine Holzkon-	71
struktion mit Strohballendämmung, beidseitig mit einer Bretter-	
schalung verkleidet (Wind-Aussteifung), mit Lehm (innen) und	
Trassitkalk (außen) verputzt. Der Brandtest ergab für dieses Teil	
die Brandbeständigkeitklasse F90.	
536: Die im Zuge des Projekts durchgeführte	79
Wärmeleitfähigkeitsuntersuchung ergaben für Weizenstrohballen	
einen Lambda-Wert (Rechenwert) von 0,0456 W/mK.	
537: Die qualitative Bewertung der Schallschutzeigenschaften	89
der verschiedenen Strohwand-Varianten haben ergeben, dass	
bei durchgängigen Schalen an der Außen- und Innenseite	
der Strohdämmung (Putze, Platten, in den anderen Fällen	
vollflächige Diagonalschalung innen und Plattenbaustoffe außen)	
gute Schalldämmwerte erreichbar sind. Durch zweischalige	
Bauweise ist sehr guter Schallschutz erreichbar. Bei einschaligem	
Aufbau der Strohwand kann der Mindestschallschutz je nach Art	
der Beplankung eingehalten werden.	

$3.24~{\rm Pr.}$ "Biomassefeuerungen für Objekte mit niedrigem Energiebedarf"

Tab. 28: Hervorzuhebendes im Projekt "Anforderungsprofile für Biomassefeuerungen zur Wärmeversorgung von Objekten mit niedrigem Energiebedarf"

Inhalt	Seite
538: Umfrageergebnis in Niedrigenergiebauten: Interessant ist der	129
hohe Anteil von 51% von "Weiß nicht"-Antworten auf die Frage:	
mit welchem Brennstoff werden die Wohnungen beheizt?	
539: Simulationsergebnis für ein 2001 gerade noch die Bauordung	53
erfüllendes (= schlecht gedämmtes) Gebäude: Eine Raumtemper-	
aturerhöhung um 2°C erhöht den Wärmebedarf für die Heizung	
um 27% für das Wohn- und um 35% für das Bürogebäude. Dieser	
Anstieg ist wesentlich höher als bei "normal" gedämmten Gebäuden	
des derzeitigen Gebäudebestandes in Österreich	

Tab. 28: Hervorzuhebendes im Projekt "Anforderungsprofile für Biomassefeuerungen zur Wärmeversorgung von Objekten mit niedrigem Energiebedarf" – Fortsetzung.

Inhalt	Seite
540: Simulationsrechnungen mit TRNSYS zu einem Mehrfamilien-	43
wohnhaus und einem Bürogebäude	
541: Das Thema "Heizen" spielte 2001 für die BewohnerInnen in	151
Mehrfamiliengebäuden eine untergeordnete Rolle. Dies unterschei-	
det Bewohner im verdichteten Wohnbau signifikant von Bewohnern	
von Ein- oder Zweifamilienhäusern, die zu ihrer Heizanlage im Haus	
wesentlich mehr Bezug haben und über diese auch gut informiert	
sind	
542: Kompletter Fragebogen zu Umfrage in Wohnungen zum Thema	155
Heizsystem/Lüftung für HausmeisterInnen / HeizungsbetreuerIn-	
nen	
543: Befragung der Bewohner zum Heizsystem und	0
Lüftungsverhalten. 467 Personen.	
544: Umfrageergebnis bei Biomassekesseln: In 82% der Wohnungen	129
erfolgt die Wärmeabgabe über Heizkörper	
545: Umfrageergebnis bei Biomassekesseln: Vor allem bei	25
Reinigungs- und Wartungsarbeiten, aber auch im Betrieb sind die	
Anlagen den Bewohnern oft zu laut. Zur Lösung dieses Problems	
werden die Biomassekessel z. B. auf Gummimanschetten gestellt,	
um ein Vibrieren zu verhindern.	
546: Beschreibung einer Heizlastberechnung laut (mittlerweile ve-	48
ralteter!) ÖNORM B 8135 (Graz: -12°C): keine inneren Gewinne,	
keine solare Einstrahlung, Luftwechsel von 0,8 ½. Innentemperatur	
von 21°C.	
547: Beschreibung raumlufttemperaturgeregelter Verschattungsele-	205
mente für die Simulation: Übersteigt die mittlere Raumlufttemper-	
atur einer Zone 23°C so wird die Verschattung als "aktiv" angenom-	
men. Fällt die Raumlufttemperatur dann wieder unter 21°C so wer-	
den die Verschattungselemente deaktiviert.	
548: Simulation der Belüftung eines Bürogebäudes: es wird eine	189
raumlufttechnische Anlage angenommen deren Tagesgang an Luft-	
durchsatz vorgegeben werden kann. Der angesetzte Tagesgang des	
Luftwechsels setzt sich aus drei Luftwechselraten zusammen.	
549: Gute Kurzbeschreibung des Simulationsprogrammes TRNSYS	249
(inkl. Grenzen der Anwendbarkeit)	
550: Lüftungsannahme zu einer Simulation eines Niedrigen-	188
ergiewohngebäudes: Der durch Undichtigkeiten der Gebäudehülle	
auftretende Luftwechsel wird mit 0,1 ½ (Montag - Sonntag, 0 - 24	
Uhr) angesetzt.	

Tab. 28: Hervorzuhebendes im Projekt "Anforderungsprofile für Biomassefeuerungen zur Wärmeversorgung von Objekten mit niedrigem Energiebedarf" – Fortsetzung.

Inhalt	Seite
551: Lüftungskonzept gegen Überwärmung: Sobald die Raumluft-	47
temperatur über 24°C steigt und die Außentemperatur darunter	
liegt, erhöht sich der Luftwechsel um 1-h, um die Überwärmung	
wegzulüften. Fällt die Raumlufttemperatur dann wieder unter	
23°C, reduziert sich der Luftwechsel wieder.	
552: Lüftungsannahme zu einer Simulation eines Niedrigen-	187
ergiewohngebäudes: Bei der Fensterlüftung wird ein Luftwechsel	
von 0,8 in der Simulation angesetzt. Begründung: Geht man davon	
aus, dass der hygienisch erforderliche Luftwechsel zu jeder Zeit	
eingehalten werden muss, so wird, aufgrund der schlechten Regel-	
barkeit der Fensterlüftung, der tatsächliche Luftwechsel höher sein	
als der rein hygienisch erforderliche. Der Faktor dieser Erhöhung	
wird durch das Lüftungsverhalten der Bewohner bestimmt. Für die	
Referenzvariante wird dieser Faktor mit 2,0 angesetzt.	

3.25 Pr. "PH-Scheitholzofen"

Tab. 29: Hervorzuhebendes im Projekt "Passivhaustauglicher Scheitholzofen kleiner Leistung"

Inhalt	Seite
553: Gute Beschreibung, wie ein Ofen feuerungstechnisch sukzessive	25
9.	20
optimiert wird: Einführen einer zusätzlichen Luftzufuhr, Einführen	
einer zusätzlichen wassergekühlten Umschließungsfläche, da zuerst	
eine zu hohe Abgastemperatur von 260°C erreicht wurde.	
554: Gezielte Senkung der Abgastemperatur von einem Aus-	25
gangswert von 280°C (Bild 6) durch Gestaltung der oberen Ab-	
deckung des Kaminofens als wasserführend.	
555: Auch wenn nur geringe Mengen für ein EFH bzw. eine Wohnung	42
(3 bis 5 Festmeter) benötigt werden	
556: Um möglichst schnell hohe Feuerraumtemperatur zu erreichen	35
und die Flamme nicht an eine kalte Feuerraumdecke auftreffen	
zu lassen, wurde mit einem hitzebeständigen 2 mm Abdeckblech	
abgedeckt und oberhalb isoliert.	
557: Einsatz eines rund 800 Liter Speichers (Boiler-Puffer-	9
Kombination). Die konzipierte räumliche Nähe zwischen	
Wärmeerzeuger und Speicher soll eine Beladung ohne Pump-	
betrieb ermöglichen. Diese Variante würde auch erlauben, auf	
eine thermische Ablaufsicherung zu verzichten und damit keinen	
Wasseranschluss zum Aufstellort erfordern (Anmerkung im	
Bericht: "Rechtliche Grenzen prüfen").	

Tab. 29: Hervorzuhebendes im Projekt "Passivhaustauglicher Scheitholzofen kleiner Leistung" – Fortsetzung.

Inhalt	Seite
558: Eine Schweizer Studie über die Wärmeverteilung in einem	7
Passivhaus und mögliche Überwärmung des Aufstellraumes durch	
eine zentrale Heizquelle. Ausgegangen wurde dabei von 2 kW	
Wärmeabgabe im Wohnzimmer, die nach der vorliegenden Studie	
zu einer Überwärmung des Aufstellungsraumes auf ca. 27°C über	
mehrere Stunden führt.	
559: Mögliche Überwärmung des Aufstellraumes in einem	10
"Mustergebäude" bei 15, 30, und 45 kWh/m² a (nach PHPP, wenn	
1 kW abgegeben wird bzw. wenn 2 kW abgeben werden.	
560: Fazit: Eine geringe Überhitzung der Wohnräume auf rund 26	10
bis 27°C über einige Zeit wird als akzeptabel angesehen. Daher	
ist eine Reduktion der direkt an den Aufstellraum abgegebenen	
Wärme von unter 30% nach derzeitigem Stand der Erkenntnisse	
nicht erforderlich.	
561: "Nachbau" der Simulation mit Thermal Analysis Simula-	12
tion Software (TAS) auf Ausgangswerte die auch für die PHPP-	
Berechnung verwendet wurden.	

3.26 Pr. "San. Tschechenring"

Tab. 30: Hervorzuhebendes im Projekt "Wohnhaussanierung Tschechenring"

Task 50. Tiel verzames eriaes im 1 10 jene ", vermine aesemier ang 1 senies	
Inhalt	Seite
562: Innendämmung mit Multipor-Mineraldämmplatten (ur-	6
sprünglich Ca-Si-Platten geplant)	
563: Einsatz wassersparender Armaturen	9
564: Nachweis der Sommertauglichkeit mit PHPP durchgeführt (ob-	11
wohl kein Passivhaus)	
565: Im Innenbereich Sanierputz aufgebracht als Ausgleichsputz für	17
Innendämmung	

3.27 Pr. "Hochbauplaner der Zukunft"

Tab. 31: Hervorzuhebendes im Projekt "Hochbauplaner der Zukunft"

Inhalt	Seite
566: Wohnungsweise Raumwärmeverbrauchsmessung im Pas-	80
sivhaus sinnlos: Arbeitsgruppenergebnis von Teilnehmern aus	
einem Workshop: Wohnungsbezogene Heizwärmeabrechnung sei im	
Passivhaus Unsinn, weil die Kosten für die Messung des Energie-	
verbrauchs mehr als die Hälfte der gesamten Wärmeenergiekosten	
betragen (gilt für Fernwärme).	

Pr. "Haus Zeggele" 3.28

Tab. 32: Hervorzuhebendes im Projekt "Haus Zeggele in Silz"

Inhalt	Seite
567: Heiztechnikkonzept mit drei Wärmeerzeugern: Eigener Waldbe-	20
stand der Gebäudebewohner vorhanden. Holzvergaserkessel mit	
Pufferspeicher plus Kachelofen in der "Stube". Aus Komfort-	
gründen für Urlaubs- oder Krankheitsfall auch Gastherme vorge-	
sehen. Holzvergaser verteilt über "Bauteiltemperierung" Wärme in	
jenen Bereichen, die über den gemauerten Grundofen unzureichend	
versorgt würden.	
568: Erdgeschoß im Zuge der Sanierung ungedämmt belassen.	-2
Gründe gegen Außendämmung: höhere Sicherheit bei der	
Bauteilschadensfreiheit sowie optische und denkmalpflegerische	
Gründe. Grund gegen Innendämmung: Gewölbeausbildung	
im Erdgeschoß. Sanierungsziel war vorwiegend die Erhaltung	
beziehungsweise die Wiederherstellung der alten Substanz und	
weniger eine energietechnische Optimierung. \rightarrow Nach Sanierung	
noch immer mehr als die Hälfte des Heizwärmebedarfes durch	
Transmissionswärmeverluste der Außenwand.	
569: Tlw. extrem alte Gebäudesubstanz, im Laufe der Jahrhun-	15
derte erweitert \rightarrow Überlagerung von Baukörpern aus den einzelnen	
Bauphasen: spätromanischer/frühgotischer Kernbau, Erweiterung	
in der Renaissance (Ende 16. Jahrhundert, Anfang 17. Jahrhun-	
dert). Zusätzliche Ausbauten und Erneuerungen im 19. Jahrhun-	
dert (Obergeschoss)	

Tab. 32: Hervorzuhebendes im Projekt "Haus Zeggele in Silz" – Fortsetzung.

Inhalt	Seite
Inhalt 570: Aufbau der Innendämmung im Obergeschoß: *) bestehende Fachwerkständerwand 20 cm, ca. 15 % Holzanteil, dazwischen Ausmauerung mit damals üblichen Restmaterialien (Steine, Mörtel, Stroh, etc), außen verputzt *) Heraflax 2*6 cm zwischen Holzständerkonstruktion (Dämmstärke kann aufgrund des unebenen Untergrunds variieren) *) OSB-Platte als Dampfbremse *) Heraklith-Platte als Putzträger *) Innenputz Luftdichte Verklebung der OSB-Platten an den Stößen mit Klebebändern. Zusätzlicher "Luftdichheitsschutz" innere Putzschicht. OSB-Platte stellt die Dampfbremse dar, welche zwar einen gewissen Feuchteeintrag durch Dampfdiffusion zulässt, aber im Gegensatz zu luftdichten Konstruktionen die Austrocknung zur Raumseite hin zulässt. "Einseitige" Innendämmung nur im oberen Geschoß (Erdgeschoß aufgrund der Gewölbeausbildung nicht innengedämmt – und auch nicht außengedämmt) ließe ohne Gegenmaßnahmen erhöhtes Feuchterisiko für die Balkenköpfe der Holzträme der Zwischendecke Erdgeschoß Obergeschoß befürchten → ständige Beheizung des Erdgeschoßes sowie gezielt installierte Wandheizung bzw. Bauteiltemperierung.	Seite 20
571: Neu aufgesetztes Dach wurde mit Zellulose-Einblasdämmung gedämmt	20
572: Vorgesetzter Glasverbindungstrakt für zwei Gebäude mit Steinspeicher im Fundament des Verbindungsganges	21

3.29 Pr. "Kooperative Sanierung"

Tab. 33: Hervorzuhebendes im Projekt "Kooperative Sanierung"

Inhalt	Seite
573: Ein Projektergebnis war die Erarbeitung eines Leitfadens für	11
nachhaltige Sanierungen, der eine Grundlage für dieses Projekt	
darstellt.	
574: Das OTB Research Institute für Housing and Urban Mobility	11
Studies in Delft führt in den Niederlanden Projekte zu den The-	
men "Gesundheit" und "Lüftung" in Wohngebäuden durch. Für die	
Einbeziehung der BewohnerInnen wurden Bewertungsinstrumente	
entwickelt, die der Selbstevaluation der MieterInnen und der Be-	
standaufnahme von Mängeln in den Wohnbereichen dient. Dabei	
zeigt sich, dass alleine die Einbeziehung der NutzerInnen in die Er-	
stellung der Mängelliste einen positiven Effekt auf ihre Motivation	
bei zu setzenden Sanierungsmaßnahmen mit sich bringt.	

Tab. 33: Hervorzuhebendes im Projekt "Kooperative Sanierung" – Fortsetzung.

Inhalt	Seite
575: Das erste Projekt wurde vom Österreichischen Ökologieinstitut	11
durchgeführt und trug den Titel "Sanierung Pro! Sanierung und	
Partizipation im mehrgeschossigen Wohnbau". Ziel dieses Projektes	
war die Erstellung eines Leitfadens ("Erfolgreich Sanieren mit Be-	
wohnereinbindung"), der Bauträger, PlanerInnen und BeraterInnen	
im Rahmen von Sanierungsprozessen im mehrgeschossigen Wohn-	
bau bei der Bewohnereinbindung unterstützt.	
576: Die qualitativen Experteninterviews wurden mit Hilfe eines	13
Gesprächsleitfadens durchgeführt, dauerten in der Regel 1 bis 1 1/2	
Stunden, wurden auf Tonband mitgeschnitten, transkribiert und in-	
haltsanalytisch mit dem Softwareprogramm "ATLAS Ti" ausgew-	
ertet.	
577: 3.2. Voraussetzungen für das Gelingen von Partizipation-	14
sprozessen	
578: Viele, interessant zu lesende, Interviewausschnitte als Zitate	50
zu unterschiedlichen Themen. Ungeschminkt, aus der Sicht der	
wesentlichen Akteure über Direktzitate (z. B. zu den Themen:	
wie sehen Wohnbaugenossenschaften das Thema "Nachhaltiges	
Sanieren"?, Wie beginnt ein Sanierungsprozess?). Gut zum Ein-	
lesen für -F-KurskandidatInnen.	
579: 4.16. Grenzen der Beteiligung	60

3.30 Pr. "Sanierung WOP, Weinheberstraße"

Tab. 34: Hervorzuhebendes im Projekt "WOP - Wohnbausanierung mit Passivhaustechnologien, Linz, Österreich"

Inhalt	Seite
580: Auswahl Dämmstoff Fassade: Vergleich verschiedener Vari-	29
anten nach ökologischen und Kosten-Kriterien. Entscheidung für	
Wärmedämmverbundsystem mit Dämmstoff Mineralschaumplat-	
ten.	
581: Dämmung Rolladenkasten: Vergleich PU-Dämmung mit	46
Vakuumdämmplatten. Nach derzeitigem Stand des Wissens	
ist Dämmung mit Vakuumpaneelen in ökologischer Hinsicht	
vorzuziehen, aus Kostengründen wurden aber PU-Platten einge-	
setzt.	

Tab. 34: Hervorzuhebendes im Projekt "WOP - Wohnbausanierung mit Passivhaustechnologien, Linz, Österreich" – Fortsetzung.

Inhalt	Seite
582: Empfehlung Sockeldämmung: Wird die Fassadendämmung mit hinterlüfteter Fassade ausgeführt, kann eine solche Lösung auch für den Sockelbereich interessant sein. Beim verputzten System ist aus ökologischer Sicht Schaumglas als Dämmstoff zu empfehlen. Wird aus wirtschaftlichen Erwägungen Extrudiertes Polystyrol (XPS) eingesetzt, sollten nur ${\rm CO}_2$ -geschäumte ("HFKW-freie") Platten eingesetzt werden, da HFKW ein sehr hohes Treibhauspotential besitzt.	50
583: Die bestehende Loggia wird verbreitert. Bei der Planung dieser Konstruktion wurde die Dämmung der gesamten auskragenden Wände und Balkonplatten berücksichtigt, sodass hier die Wärmebrücke entschärft wird.	52
584: Eine ambitionierte sozialwissenschaftliche Begleitung und Bewohnereinbindung wurde durchgeführt. Schwerpunkt war, auf Bedenken der Bewohner bezüglich der Lüftungsanlage einzugehen. Hiezu wurde auch ein Fragenkatalog ausgearbeitet.	55
585: Die sozialwissenschaftliche Begleitung und Moderation des Planungsprozesses umfasste vier Schritte: 1) Moderation einer Mieterversammlung, 2) Durchführung von Beratungsgesprächen mit den Mietern, 3) Mitgestaltung und Mediation bei einem Infotag, 4) Zusammenfassung der Ergebnisse	61
586: Akzeptanzerhöhung Lüftungsgerät: Das gewählte Lüftungsgerät Inventer iV 14 wurde bei Besprechungen mit den Mietern im Raum aufgebaut und in voller Funktion den Mietern präsentiert, sodass sie sich einen Eindruck von der Größe des Gerätes und der geringen Lautstärke machen können. Es ist anfangs in Betrieb unter einem Tuch versteckt, sodass den Mietern klar werden kann, dass es tatsächlich beim Aufenthalt im Raum nicht wahrgenommen wird.	57
587: Die Moderation des Informations- und Beratungsprozess- es durch eine externe "intermediäre" Instanz stellt bei großen Sanierungsmaßnahmen mit Passivhaustechnologie eine positive Einrichtung zur Verbesserung der Nutzerakzeptanz dar.	69
588: Die Befragung der Mieter/innen (100 Prozent der Haushalte) hat gezeigt, dass es nach wie vor eine breite Skepsis gegenüber einer Änderung des Nutzerverhaltens beim Heizen und Lüften gibt. Die klassische Fensterlüftung in der Heizperiode (insbesondere Dauerlüften im Schlafzimmer) wird nur sehr mühsam zu verändern sein, das zeigen auch die durchgeführten Interviews. Bedingt durch den hohen Altersschnitt in sanierungsbedürftigen Altbeständen dürfte sich die notwendige Verhaltensänderung bei Sanierung noch schwieriger als im Neubau gestalten.	69

Tab. 34: Hervorzuhebendes im Projekt "WOP - Wohnbausanierung mit Passivhaustechnologien, Linz, Österreich" – Fortsetzung.

Inhalt	Seite
589: Die Beratungsgespräche und Interviews haben gezeigt, dass	69
neue energiesparende Techniken beim Heizen und Lüften insbeson-	
dere im Mietwohnungsbau einwandfrei und ohne aufwändige Bedi-	
enung funktionieren müssen. Empfohlen werden für Sanierungspro-	
jekte mit Passivhaus-Standard eine möglichst optimale Einschulung	
der Mieter/innen sowie die Weitergabe einer einfachen und klaren	
Bedienungsanleitung.	
590: Generell drückt das Ergebnis der Befragungen erhebliche In-	68
formationsdefizite sowie eine große Skepsis gegenüber der praktis-	
chen Nutzung einer automatischen Lüftung aus. Kritisch gesehen	
werden vor allem die vermutete Ähnlichkeit mit Klimaanlagen und	
die angenommene Lärmentwicklung im Betrieb der Lüftungsanlage.	
Die Hälfte der Haushalte findet außerdem einen hohen Stromver-	
brauch als zutreffend.	
591: Trotz aller Bemühungen der Mediation und Information-	62
sweitergabe gab es von mindestens 3 Haushalten eine "definitive	
Ablehnung" der Komfortlüftung. Nach deren Meinung sollte die	
Sanierung ähnlich jener der bereits sanierten Objekte in der Umge-	
bung durchgeführt werden.	
592: Die Fragen der Bewohner im Zusammenhang mit der kon-	62
trollierten Wohnraumlüftung betrafen insbesondere Kosten, Filter-	
wechsel, Bedienbarkeit, Zugigkeit und Platzierung des Gerätes.	
593: Vergleich des ökologischen Profils verschiedener Varianten der	73
Außenwanddämmung	
594: Ergebnis ökologischer Vergleich Außenwanddämmungen:	81
Empfehlungen für Wärmedämmverbundsystem Miner-	
alschaumplatte mit Silikatputz, Wärmedämmverbundsystem	
Hanfdämmplatte mit Silikatputz, Zellulose zwischen Holz-C-	
Trägern, hinterlüftete Dämmsysteme.	
595: Dämmung Rollladenkästen: Vakuumdämmplatte bessere	82
Ökobilanz als Polyurethan	
596: Dämmung Sockelbereich: Aus ökologischer Sicht ist Schaumglas	82
oder hinterlüfteter Fassade vor XPS der Vorzug zu geben. Falls	
$\rm XPS, nur CO_2\text{-}gesch \ddot{a}umte Platten einsetzen.$	
597: Vergleich des ökologischen Profils verschiedener Varianten der	83
Dachdämmung. Als Dämmstoff wird Zellulose zwischen Holzkon-	
struktion empfohlen.	
598: Empfohlene Varianten für Kellerdeckendämmung	87

Tab. 34: Hervorzuhebendes im Projekt "WOP - Wohnbausanierung mit Passivhaustechnologien, Linz, Österreich" – Fortsetzung.

Inhalt	Seite
599: Entscheidung für dezentrales Lüftungsprinzip: Bezüglich In-	88
vestitionskosten ergibt der Systemvergleich nahezu Preisgleichheit.	
In Sachen Umsetzbarkeit im bewohnten Zustand stellt sich je-	
doch heraus, dass die dezentrale Lösung deutliche Vorteile mit sich	
bringt, da die Montagezeiten innerhalb der Wohnung nur sehr kurz	
sind, wohingegen bei der semizentralen nahezu die gesamte An-	
lagemontage innerhalb der Wohnung erfolgen muss. Hinzu kommt	
allerdings, dass bei der dezentralen Lösung das Deckengerät und	
das erforderliche Luftkanalnetz noch zusätzlich baulich verkleidet	
werden muss, z.B. mit einer abgehängten Gipskartondecke.	
600: Gegenüberstellung Einzelraum-Lüftungsgeräte	90
601: Thermografie-Aufnahmen vor und nach Sanierung	98
602: Gliederung Mehrkosten nach Gewerken	113
603: Kostenschätzung Lüftungsanlage	-6

3.31 Pr. "Begleituntersuchung Roschégasse"

Tab. 35: Hervorzuhebendes im Projekt "Begleituntersuchungen zum Projekt Roschégasse"

Inhalt	Seite
604: In der Passivhauswohnanlage Roschegasse (Wien) liegen die	7
Raumtemperaturen eigentlich zu keinem Zeitpunkt im Jahr unge-	
wollt unter dem behaglichen Bereich. Probleme ergeben allerdings	
sehr wohl im Sommer durch Überhitzungserscheinungen. Vor allem	
in einer Wohnung wurden Temperaturen von über 30°C gemessen.	
605: Die relative Raumfeuchte bewegt sich im Sommer mit Werten	8
zwischen 30% und 65% exakt innerhalb der Behaglichkeitsgrenzen	
gemäß ISO EN 7730. Im Winterfall gibt es häufig Probleme mit	
zu trockener Raumluft (rel. Feuchte kleiner 30%), die wie beispiel-	
sweise im Februar 2008 auf bis zu 20% absinken kann.	
606: Während eines mehr als vier Monate andauernden	9
Meßzeitraums wurde eine CO ₂ -Konzentration von mehr als	
1000 ppm nur wärend zwei Prozent der Zeit überschritten.	

Tab. 35: Hervorzuhebendes im Projekt "Begleituntersuchungen zum Projekt Roschégasse" – Fortsetzung.

Inhalt	Seite
607: Knappes Überschreiten der Passivhaus-Grenzwerte: Der	10
raumtemperatur- und klimabereinigte Heizwärmeverbrauch liegt	
mit $15,27 \text{ kWh/(m}^2 \text{ a)}$ knapp über dem geforderten Wert von 15	
kWh/(m ² a). Die maximale Heizlast liegt bei 10,3 W/m ² . Der	
Primärenergieverbrauch liegt mit 144,2 kWh/(m ² a) im ersten	
Messjahr um 20% über dem geforderten Wert von 120 kWh/(m ²	
a). Ausschlaggebend für den relativ hohen Primärenergieverbrauch	
trotz der ist vor allem der hohe Anteil elektrischer Verbrauch-	
er. Neben dem Haushaltsstrom wirken sich natürlich auch die	
Verbraucher Wärmepumpe und Elektroheizungen negativ auf die	
Primärenergiebilanz aus.	

3.32 Pr. "Einfach:wohnen"

Tab. 36: Hervorzuhebendes im Projekt "Einfach:wohnen, Ganzheitliches Konzept für den mehrgeschossigen Wohnbau"

Inhalt	Seite
608: Realisierung von drei verschiedenen energetischen	17
Gebäudestandards: Niedrigenergiehaus (mit Fensterlüftung	
und konventioneller Radiatorenheizung), "Fast-Passivhaus" (mit	
Lüftungsanlage und reduzierten Heizflächen, Dämmstandard wie	
bei Niedrigenergiehaus), Passivhaus	
609: kleine Heizflächen im Passivhaus: Untersuchungen (Com-	32
putational Fluid Dynamics-Luftströmunssimulation) haben dazu	
geführt, dass im Wohnzimmer (der im Passivhausstandard	
errichteten Wohneinheiten) im Bereich der 2-geschossigen Ver-	
glasungselemente und im Badezimmer kleine Heizkörper installiert	
wurden. Die Leistung des Heizkörpers am Fensterparapet beträgt	
350 W.	
610: Argumente gegen zentrale Lüftungsanlagen: Grundsätzlich	33
haben die Erfahrungen der letzten Jahre mit Lüftungsanlagen in	
mehrgeschossigen Niedrigenergie- und Passivhäusern gezeigt, dass	
zentrale Systeme eine Reihe von Nachteilen aufweisen. So lassen	
sich Temperaturen und Luftmengen in den einzelnen Wohnun-	
gen meist nicht oder nur unzureichend regeln. Man braucht für	
solche Anlagen lange Luftleitungen mit großen Querschnitten mit	
allen damit verbundenen Nachteilen (Raumbedarf, Druckverluste,	
Stromverbrauch, schlechte Abrechnungsmöglichkeit usw.). Daher	
werden neuere Anlagen praktisch nur mehr nach zwei Prinzipien	
ausgeführt: semizentral oder dezentral.	

Tab. 36: Hervorzuhebendes im Projekt "Einfach:wohnen, Ganzheitliches Konzept für den mehrgeschossigen Wohnbau" – Fortsetzung.

Inhalt	Seite
611: Semizentrales versus dezentrales Lüftungskonzept: Der Vorteil	33
von semizentralen Anlagen liegt vor allem in der einfacheren	
Wartung (Filtertausch, usw.) in der leicht zugänglichen	
Lüftungszentrale. Als nachteilig erweisen sich die meist aufwendi-	
gere Ausführung sowie Risiko von Geruchsübertragungen. Bei ein-	
er dezentralen Lüftungsanlage werden kompakte Lüftungsgeräte	
in jeder Wohnung eingebaut und überwiegend selbstständig be-	
trieben. Aufwendige Lüftungssammelleitungen können weitgehend	
vermieden und jedes Lüftungsgerät kann einzeln geregelt werden.	
612: Ökologisch nachhaltiges Nutzerverhalten kann neben	34
verstärkter Information und "Bewohner-Qualifizierung" nur	
durch ein hohes Maß an Identifikation mit dem Projekt und	
der gesamten Wohn- und Wohnumfeldsituation erreicht werden.	
Diese Identifikation passiert allerdings nicht oder nur bedingt von	
selbst, sondern muss durch soziokulturelle Maßnahmen in Form	
von "Anschubhilfe" gefördert werden. Um nachhaltige Ergebnisse	
zu erzielen, geht es insbesondere beim ökologischen Bauen und	
Wohnen nicht mehr nur um die Sicherung der Akzeptanz durch	
die Nutzer/innen im Sinne von "Hinnahmebereitschaft", sondern	
um deren engagiertes Mitwirken am gesamten Prozess, d.h. nach	
Möglichkeit in der Planungs-, Bau- und Wohnphase.	
613: Beteiligungsbereitschaft der Bewohner: Knapp 18 % geben an,	53
in keinerlei Aktivitäten der "Bewohnerbeteiligung" einbezogen wer-	
den zu wollen, ein Viertel will sich beteiligen und mehr als die Hälfte	
der Befragten zeigt sich noch abwartend. Von den Haushalten, die	
sich beteiligen wollen, ist ein Drittel v.a. an Hausversammlungen	
interessiert und ein Viertel an der Mitarbeit in Arbeitsgruppen.	
614: Ein überdurchschnittliches Maß an Information der "Kunden"	68
bildet die Grundlage jeglicher Bewohner-Partizipation. Frühzeitige	
und laufende Kommunikation mit den Wohnungsinteressenten führt	
zu Kundenbindung und zur Identifikation mit dem Wohnquartier,	
was insbesondere bei anspruchsvollen Wohnprojekten eine große	
Rolle spielt. Dabei ist neben der medialen (Info-Broschüren etc.)	
die "face-to-face"-Kommunikation mehr denn je von Bedeutung.	

Tab. 36: Hervorzuhebendes im Projekt "Einfach: wohnen, Ganzheitliches Konzept für den mehrgeschossigen Wohnbau" – Fortsetzung.

Inhalt	Seite
615: Mobilität / PKW-Nutzung: Erklärtes Ziel bei der Planung der	67
Solar City ist die Vermeidung von PKW-Verkehr durch das Anbi-	
eten eines attraktiven öffentlichen Nahverkehrs. Außerdem ist der	
Siedlungskern autofrei. Automobilität spielt dennoch eine bedeu-	
tende Rolle: 38 % der befragten Haushalte haben 2 PKW und nur	
2 % werden mit Einzug in die solarCity kein Auto besitzen. Drei	
Viertel der befragten Männer und 60 % der Frauen wollen nach	
Bezug der solarCity den Weg zum Arbeitsplatz mit dem eigenen	
Auto zurücklegen.	
616: Vermeidung von Wärmebrücken im Sockelbereich: Im Sock-	115
elbereich des aufgehenden, tragenden Ziegelmauerwerks über der	
Kellerdecke wurde die unterste Schar aus einer Reihe Gasbeton-	
steine hergestellt. Alle nicht tragenden Zwischenwände wurden	
ebenfalls auf Gasbetonsteine gestellt und damit auf die gleiche	
Weise von der Kellerdecke thermisch getrennt. Auch die Stahlbe-	
tonsäulen in den Wohnungen wurden auf Isokörbe gestellt.	
617: Wärmebrückenfreie Montage der Jalousiekästen: erfolgte mit-	123
tels punktuell im Abstand von ca. 1 m angeordneten Stahlwinkeln,	
die mehrfach thermisch entkoppelt wurden. So wurden die Winkel	
auf Holzklötzchen von 9 cm Stärke am Ziegelmauerwerk mon-	
tiert, wobei die Befestigungsschrauben noch versenkt sind. Der	
eigentliche Jalousiekasten wurde durch ein weiteres Distanzstück	
aus Holz vom Haltewinkel getrennt. Damit ist der Stahlwinkel all-	
seitig von wärmedämmenden Material umgeben und der durch ihn	
verursachte Wärmebrückeneffekt praktisch vernachlässigbar.	
618: Führung der Solarleitungen in der Außenwanddämmung: Die	127
Führung der Solarleitungen von den Sonnenkollektoren in den	
Haustechnikraum im Keller erfolgt in den Außenwänden, und zwar	
in der Dämmebene, wobei darauf geachtet wurde, dass rund um die	
Leitungen ausreichend Wärmedämmung vorhanden ist. Damit wird	
erreicht, dass einerseits die Wärmeverluste zwischen den Kollek-	
toren und dem Keller verringert werden und andererseits die so re-	
duzierten Verluste zum größten Teil den Wohnräumen zugute kom-	
men.	

Tab. 36: Hervorzuhebendes im Projekt "Einfach:wohnen, Ganzheitliches Konzept für den mehrgeschossigen Wohnbau" – Fortsetzung.

Inhalt	Seite
619: Licht- und jahreszeitlich gesteuerter Sonnenschutz: Bei allen großflächigen, südorientierten Verglasungen werden automatisch gesteuerte Außenjalousien eingebaut, um das Risiko von Überhitzungen im Sommer zu minimieren. Die Jalousien werden über Lichtsensoren so gesteuert, dass sie im Sommer automatisch heruntergelassen werden, wenn das Sonnenlicht einen bestimmten Schwellwert überschreitet. Im Winter fährt die automatische Steuerung die Jalousien bei Tageslicht hoch und lässt sie in der Nacht herunter. Die Bewohner können den Sonnenschutz alternativ auch händisch bedienen.	128
620: Recycling-Speicherziegel aus Ziegelsplitt: Ursprünglich war vorgesehen, einen Recycling-Speicherziegel aus Ziegelsplitt (produziert in Gars am Kamp) einzusetzen. Da zum Zeitpunkt der Errichtung der Wohnhausanlage noch keine bautechnische Zulassung für Oberösterreich vorlag, wurden als Ersatz relativ schwere Hochlochziegel (hohe Speichermasse) verwendet. Diese wurden in geringerer Entfernung zur Baustelle produziert, wodurch die Transportwege und die damit verbundenen Umweltbelastungen auf etwa ein Viertel gegenüber dem ursprünglich geplanten Recycling-Speicherziegel reduziert werden konnten.	130
621: Einsatz Vakuumdämmung an der Deckenunterseite im Durchgangsbereich: Zuerst wird eine Expandiertes Polystyrol (EPS)-Schicht an die Betondecke geklebt, dann werden zwei Lagen Vakuumdämmung zur Minimierung der Wärmebrücken mit versetzten Stößen verlegt und ebenfalls verklebt. Anschließend wird eine weitere dünne Schutzschicht aus expandiertem Polystyrol angebracht. Zur Absicherung gegen eine Ablösung der Dämmschichten und zum Schutz vor äußerer Beschädigung wird an der Unterseite eine Metallkassettendecke montiert. Erreichter U-Wert: 0,095 W/.	131
622: Tageslichtumlenkende Transparente Wärmedämmung (TWD)-Elemente: Bei Räumen mit größeren Tiefen werden einfache tageslichtumlenkenden Elemente mit einer Füllung aus transparenter Wärmedämmung (Kapilux TWD) als Oberlichten eingebaut. Neben der wesentlich besseren Ausleuchtung der rückwärtigen Raumbereiche mit natürlichem Tageslicht und der damit verbundenen Kunstlicht – und Stromeinsparung weisen sie auch höhere Nettoenergiegewinne als die besten verfügbaren Wärmeschutzverglasungen auf.	134

Tab. 36: Hervorzuhebendes im Projekt "Einfach:wohnen, Ganzheitliches Konzept für den mehrgeschossigen Wohnbau" – Fortsetzung.

Inhalt	Seite
623: Wärmeschutzverglasung mit innenliegender Jalousie:	137
Im Gemeinschaftsbereich des Hauses war ursprünglich der	
Einsatz einer automatisch gesteuerten, elektrochromen Ver-	
glasung geplant. Da diese nicht mehr erhältlich war, mußte	
auf eine Wärmeschutzverglasung mit innenliegender Jalousie	
zurückgegriffen werden.	
624: Heizungsumwälzpumpe mit niedrigstem Stromverbrauch: Eine	139
in der Schweiz entwickelte Heizungsumwälzpumpe wurde eingeset-	
zt, die durch einen drehzahlgeregelten Drehstrom-Synchronmotor	
mit Permanentmagnet-Rotor und hohen Drehzahlen bis zu 4000	
U/min den Stromverbrauch um etwa 60 % reduziert.	
625: Kostenvergleich Passivhaus – Niedrigenergiehaus: Die	148
Mehrkosten des Passivhauses im Vergleich zum Niedrigenergiehaus	
betragen 14,09%. Die Mehrkosten in den einzelnen Kategorien	
Dämmung Fassade, Dämmung Kellerdecken, Spengler und	
Schwarzdecker, Fenster, Haustechnik sind ausgewiesen.	
626: Detaillierter Kostenvergleich Passivhaus – Niedrigenergiehaus	146
627: Kostenvergleich "Fast-Passivhaus" – Niedrigenergiehaus: Die	150
Mehrkosten des Fast-Passivhauses im Vergleich zum Niedrigen-	
ergiehaus betragen 7,1%.	

3.33 Pr. "grünes LICHT"

Tab. 37: Hervorzuhebendes im Projekt "grünes LICHT, Sanierung eines großvolumigen Wohnbaues zum Passivhaus"

628: Die Attraktivität einer Wohnung wird für Nutzer stark von den Kriterien Helligkeit, privater Freiraum und Qualität des Wohnumfeldes bestimmt. 629: Fenstertausch und Belichtung: Mit gängigen Einbaudetails führt der Einbau von Passivhausfenstern zu einer starken Reduktion der Belichtung: 1. durch die Verkleinerung des Fensters (der Glasfläche) infolge des nachträglichen Einbaus, 2. durch ein Verkleinerung der Glasfläche durch dickere Rahmenprofile, 3. geringerer Lichtdurchlaß (niedriger g-Wert) infolge der 3-Scheiben Verglasung, und 4. durch die höhere Laibungstiefe infolge der großen Dämmstärke. 630: Wenn der Geschosswohnbau attraktiv sein und eine echte Alternative zum Einfamilienhaus darstellen soll, so ist der wohnung-	Inhalt	Seite
feldes bestimmt. 629: Fenstertausch und Belichtung: Mit gängigen Einbaudetails führt der Einbau von Passivhausfenstern zu einer starken Reduktion der Belichtung: 1. durch die Verkleinerung des Fensters (der Glasfläche) infolge des nachträglichen Einbaus, 2. durch ein Verkleinerung der Glasfläche durch dickere Rahmenprofile, 3. geringerer Lichtdurchlaß (niedriger g-Wert) infolge der 3-Scheiben Verglasung, und 4. durch die höhere Laibungstiefe infolge der großen Dämmstärke. 630: Wenn der Geschosswohnbau attraktiv sein und eine echte Alternative zum Einfamilienhaus darstellen soll, so ist der wohnung-	628: Die Attraktivität einer Wohnung wird für Nutzer stark von den	-13
629: Fenstertausch und Belichtung: Mit gängigen Einbaudetails führt der Einbau von Passivhausfenstern zu einer starken Reduktion der Belichtung: 1. durch die Verkleinerung des Fensters (der Glasfläche) infolge des nachträglichen Einbaus, 2. durch ein Verkleinerung der Glasfläche durch dickere Rahmenprofile, 3. geringerer Lichtdurchlaß (niedriger g-Wert) infolge der 3-Scheiben Verglasung, und 4. durch die höhere Laibungstiefe infolge der großen Dämmstärke. 630: Wenn der Geschosswohnbau attraktiv sein und eine echte Alternative zum Einfamilienhaus darstellen soll, so ist der wohnung-	Kriterien Helligkeit, privater Freiraum und Qualität des Wohnum-	
führt der Einbau von Passivhausfenstern zu einer starken Reduktion der Belichtung: 1. durch die Verkleinerung des Fensters (der Glasfläche) infolge des nachträglichen Einbaus, 2. durch ein Verkleinerung der Glasfläche durch dickere Rahmenprofile, 3. geringerer Lichtdurchlaß (niedriger g-Wert) infolge der 3-Scheiben Verglasung, und 4. durch die höhere Laibungstiefe infolge der großen Dämmstärke. 630: Wenn der Geschosswohnbau attraktiv sein und eine echte Alternative zum Einfamilienhaus darstellen soll, so ist der wohnung-	feldes bestimmt.	
duktion der Belichtung: 1. durch die Verkleinerung des Fensters (der Glasfläche) infolge des nachträglichen Einbaus, 2. durch ein Verkleinerung der Glasfläche durch dickere Rahmenprofile, 3. geringerer Lichtdurchlaß (niedriger g-Wert) infolge der 3-Scheiben Verglasung, und 4. durch die höhere Laibungstiefe infolge der großen Dämmstärke. 630: Wenn der Geschosswohnbau attraktiv sein und eine echte Alternative zum Einfamilienhaus darstellen soll, so ist der wohnung-	629: Fenstertausch und Belichtung: Mit gängigen Einbaudetails	3
(der Glasfläche) infolge des nachträglichen Einbaus, 2. durch ein Verkleinerung der Glasfläche durch dickere Rahmenprofile, 3. geringerer Lichtdurchlaß (niedriger g-Wert) infolge der 3-Scheiben Verglasung, und 4. durch die höhere Laibungstiefe infolge der großen Dämmstärke. 630: Wenn der Geschosswohnbau attraktiv sein und eine echte Alternative zum Einfamilienhaus darstellen soll, so ist der wohnung-	führt der Einbau von Passivhausfenstern zu einer starken Re-	
Verkleinerung der Glasfläche durch dickere Rahmenprofile, 3. geringerer Lichtdurchlaß (niedriger g-Wert) infolge der 3-Scheiben Verglasung, und 4. durch die höhere Laibungstiefe infolge der großen Dämmstärke. 630: Wenn der Geschosswohnbau attraktiv sein und eine echte Alternative zum Einfamilienhaus darstellen soll, so ist der wohnung-	duktion der Belichtung: 1. durch die Verkleinerung des Fensters	
gerer Lichtdurchlaß (niedriger g-Wert) infolge der 3-Scheiben Verglasung, und 4. durch die höhere Laibungstiefe infolge der großen Dämmstärke. 630: Wenn der Geschosswohnbau attraktiv sein und eine echte Alternative zum Einfamilienhaus darstellen soll, so ist der wohnung-	(der Glasfläche) infolge des nachträglichen Einbaus, 2. durch ein	
glasung, und 4. durch die höhere Laibungstiefe infolge der großen Dämmstärke. 630: Wenn der Geschosswohnbau attraktiv sein und eine echte Alternative zum Einfamilienhaus darstellen soll, so ist der wohnung-	Verkleinerung der Glasfläche durch dickere Rahmenprofile, 3. gerin-	
Dämmstärke. 630: Wenn der Geschosswohnbau attraktiv sein und eine echte Alternative zum Einfamilienhaus darstellen soll, so ist der wohnung-	gerer Lichtdurchlaß (niedriger g-Wert) infolge der 3-Scheiben Ver-	
630: Wenn der Geschosswohnbau attraktiv sein und eine echte Alternative zum Einfamilienhaus darstellen soll, so ist der wohnung-	glasung, und 4. durch die höhere Laibungstiefe infolge der großen	
ternative zum Einfamilienhaus darstellen soll, so ist der wohnung-	Dämmstärke.	
	630: Wenn der Geschosswohnbau attraktiv sein und eine echte Al-	5
	ternative zum Einfamilienhaus darstellen soll, so ist der wohnung-	
seigene Freiraum ein essentieller Bestandteil, eigentlich eine condi-	seigene Freiraum ein essentieller Bestandteil, eigentlich eine condi-	
tio sine qua non.	tio sine qua non.	

Tab. 37: Hervorzuhebendes im Projekt "grünes LICHT, Sanierung eines großvolumigen Wohnbaues zum Passivhaus" – Fortsetzung.

Inhalt	Seite
631: Hervorhebung der Bedeutung des Feuchtemanagements:	7
fundiertes (und nicht zufälliges) Feuchtemanagement im Wohnbere-	
ich wird für die Zukunft als unabdingbar gehalten	
632: Um die Feuchtigkeit in der Wohnung zu bewahren, können	7
folgende Maßnahmen getroffen werden: 1. Wäschetrockenschrank	
in Zuluft 2. semipermeable Baddecke 3. Feuchtepuffer-	
ung 4.Bepflanzung 5. Feuchtebewahrung mit Wärme- und	
Feuchterückgewinnungsgerät	
633: In Abhängigkeit der Gebäudegröße wurden die notwendigen	66
U-Werte und damit verbundenen Dämmstoffstärken der jeweiligen	
Bauteile ermittelt, um Passivhausstandard zu erreichen. Die Un-	
terschiede zwischen einem Einfamilienhaus (U-Wert Wand $= 0.12$)	
und einem sehr großen Wohngebäude (U-Wert = 0,34) sind be-	
trächtlich. Analog verringert sich die erforderliche Dämmstoffdicke	
von 32 auf 12 cm.	
634: Im Extremfall (wenig kompaktes Einfamilienhaus versus sehr	48
großer kompakter Wohnbau) hat das Einfamilienhaus pro m ²	
Nutzfläche den 20igfachen Verbrauch an Dämmstoff für die Erre-	
ichung des gleichen energetischen Standards.	
635: Energiebilanzen von Fenstern, Vergleich über eine	69
viergeschoßige Fassade im verbauten Gebiet: Südorientierte Fenster	
sind auch (tendenziell) im verbauten Gebiet Gewinnflächen (Tab.	
9)	
636: Energiebilanzen von Fenstern, Vergleich über eine	69
viergeschoßige Fassade im verbauten Gebiet, Variation der	
Fenstergröße: Südorientierte Fenster sind auch (tendenziell) im	
verbauten Gebiet Gewinnflächen (Tab. 9) Es zeigt sich, dass ein	
Fenster unter 1,5 m ² auch südseitig nicht mit der Außenwand	
konkurrieren kann (U (Wand) = 0.153). Bei größerer Größe verhält	
es sich jedoch in der Gesamtbilanz besser als ein ansonsten ver-	
wendeter Wandbauteil (höherer Glasanteil bei größeren Fenstern	
(Tab. 10). Große ungeteilte Fensterformate, zusammenhängende	
Fenster und Fixverglasungen bieten also deutliche Vorteile, kleine	
Fenster und Fensterteilungen sind in der Passivhaustechnologie	
kontraproduktiv.	
637: Die Verdoppelung der Laibungstiefe von 15 cm auf 30 cm be-	71
wirkt eine Verringerung der Wärmegewinne um 15%.	
638: Energiebilanzen von Fenstern, Vergleich über eine	72
viergeschoßige Fassade im verbauten Gebiet, Vorhandensein	
von Balkonen: Auf der Südseite ist es in allen Fällen energetisch	
günstiger, ein Fenster auszuführen als eine Wand, vorausgesetzt,	
das Fenster ist groß und der Rahmenanteil gering (Tab. 12).	

Tab. 37: Hervorzuhebendes im Projekt "grünes LICHT, Sanierung eines großvolumigen Wohnbaues zum Passivhaus" – Fortsetzung.

Inhalt	Seite
639: Verhältnis zwischen Wärmedämmung Dach und	74
Wärmedämmung Kellerdecke, das in der Summe mit dem	
minimalen Dämmstoffeinsatz auskommt: Die Dämmstoffdicke der	
Kellerdecke beträgt 70-75% von derjenigen beim Dach.	
640: Höherer Wärmeverlust und höhere Heizlast bei Wohnungen	79
in Randlage (aufgrund höheren Anteils an Außenflächen): Bei	
größeren Gebäuden kann die Heizlast für Randwohnungen bei	
alleiniger Heizung über die Lüftungsanlage nicht mehr gedeckt wer-	
den.	
641: Möglichkeiten der konstruktiven Erhöhung der Dämmdicke bei	89
Wohnungen in Randlage werden diskutiert.	
642: Ein einfaches wassergeführtes Heizsystem kann (insb.) für die	96
Problematik des höheren Wärmebedarfs in Randwohnungen Ab-	
hilfe schaffen. Wegen der gut gedämmten Gebäudehülle und den	
Passivhausfenstern ist es ohne Komfortverlust möglich, die Posi-	
tion einer Heizfläche (Heizkörper) nicht in Fensternähe zu wählen.	
Damit werden die nötigen Zuleitungen zu den Heizflächen kürzer,	
die Kosten sind nur wenig über denen einer einzelraumgeregelten	
Luftheizung. Zudem entfällt die Koppelung der Heizleistung mit der	
Luftmenge, wodurch die NutzerInnen in der Lage sind, bei trocke-	
nen Außenluftbedingungen im Winter den Luftwechsel auf die hy-	
gienischen Bedürfnisse zu drosseln (z.B. Lüftungsgerät Stufe 1) und	
trotzdem ausreichend Heizleistung im Raum einzubringen.	
643: Eine erprobte Position für die Anbringung einer	97
kostengünstigen Heizfläche ist der Türsturz. Für die Anord-	
nung des Zuluftdurchlasses eignet sich die Position über der	
Heizfläche, damit die Lüftströmung die natürliche Konvektion an	
der Heizfläche ergänzt (Abb. 46).	
644: Die Kosten für verschiedene Varianten der Beheizung	99
(Luftheizregister, Kleinheizkörper, Fußbodenheizung) einer 75 m ²	
Wohnung im Passivhausstandard wurden ermittelt (Tab. 21).	
645: Mehrkosten für Zusatzheizsysteme betragen weniger als 1% der	100
Baukosten. Berücksichtigt man, dass kein erhöhter Dämmstandard	100
für die Randwohnungen notwendig ist, werden die Mehrkosten	
in den meisten Fällen leicht wieder ausgeglichen. Die einfachen	
Zusatzsysteme ermöglichen eine individuellere Regelbarkeit, lassen	
eine Entkopplung der Heizung von der Lüftung zu, was im Winter	
Vorteile hinsichtlich der Luftfeuchtigkeit bringen kann und geben	
höhere Sicherheit weil sie mehr Spielraum in der Abdeckung der	
Heizlast gewähren.	
meiziasi gewamen.	

Tab. 37: Hervorzuhebendes im Projekt "grünes LICHT, Sanierung eines großvolumigen Wohnbaues zum Passivhaus" – Fortsetzung.

646: Um eine ausreichende Belichtung von Innenräumen zu gewährleisten, wird eine Nettoglasfläche von 25% von der Nutzfläche des Raumes empfohlen / gefordert. Bei großen Glasteilungen und teilweiser Fixverglasung entspricht dies einer Rohbaulichte von 30%-35% der Nutzfläche des Raumes. Ein-
Nutzfläche des Raumes empfohlen / gefordert. Bei großen Glasteilungen und teilweiser Fixverglasung entspricht dies ein-
Glasteilungen und teilweiser Fixverglasung entspricht dies ein-
er Robbaulichte von 30%-35% der Nutzfläche des Raumes Fin-
ci itombaunence von 5070-5070 dei ivatzinaene des itaumes. Em-
schränkungen aus Verschattung durch Balkone sind gesondert zu
bewerten, generell ist von der üblichen Balkonauskragung von 1,5
m abzugehen.
647: Verschattung durch Nachbargebäude: Der in Österreich prak-
tizierte ausreichende Lichteinfallswinkel von 45 wird von den Au-
toren als zu hoch eingeschätzt. Bei einer derart hohen Verschat-
tung durch Nachbargebäude lässt sich im EG in der Raummitte
oder Raumtiefe keine angemessene Belichtung mehr herstellen.
Anzustreben wäre eine maximale Verschattung von 30 oder ein
Verhältnis Abstand/Höhe von 2:1. In dicht verbauten Gebieten
könnten Speziallösungen wie hoch reflektierende Fassadenbeschich-
tungen, Terrassenbeläge und Fußbodenmaterialien überlegt werden.
648: Maßnahmen wie helle Raumoberflächen, weiße Fensterlaibun-
gen, helle Farbgebung von Nachbargebäuden, Verzicht auf Store
oder andere "Lichtvernichter" können nur im Rahmen langfristiger
Aufklärung im Bewusstsein von Planern und (Gebäude-)Nutzern
verankert werden.
649: Bedeutung der Maximierung des Glasanteiles (beim Einbau 117
von Passivhausfenstern). Während der Rahmen jedenfalls ther-
misch schlechter ist als die opake Wand (im Passivhaus) wird mit
dem Glas 1. der Zweck des Fensters erfüllt (nämlich die Belichtung
des Raumes) 2. die energetische Bilanz des Fenster u.U. erheblich
verbessert.
650: Gegenüberstellung von Glas- und Rahmenanteil für Fenster 119
unterschiedlicher Größe und Proportion Höhe/Breite. Bezüglich
der Proportion Höhe/Breite ist (bei gleicher Fensterfläche) ein
möglichst quadratisches Verhältnis anzustreben.
651: Selbst bei Verwendung sehr schlanker Rahmenprofile erreicht 120
man erst bei Rohbaulichten über 2 m² einen Glasanteil von über
70%. Bei Verwendung von Fixverglasungen sind auch Glasanteile
über 80% realisierbar,

Tab. 37: Hervorzuhebendes im Projekt "grünes LICHT, Sanierung eines großvolumigen Wohnbaues zum Passivhaus" – Fortsetzung.

Inhalt	Seite
652: Untersuchung verschiedener Laibungsvarianten: Die ver-	133
schiedenen untersuchten Laibungsvarianten (abgeschrägt, nicht	
abgeschrägt) weisen nur geringfügige Unterschiede in der gemesse-	
nen Tageslichtmenge auf. Daher erscheint es nicht sinnvoll, ir-	
gendwelche Lösungen mit erhöhtem technischen Aufwand umzuset-	
zen, wie zum Beispiel eine Abschrägung der Laibung. Einfache Maß-	
nahmen, wie etwa die weiße Färbung von Laibung und anderen Fen-	
sterbauteilen und die dadurch erzielten erhöhten Reflexionswerte	
führen zu kostenneutralen, leichten Verbesserungen.	
653: Drei verschiedene Varianten des Fenstertausches bei Sanierung	145
zum Passivhaus und unveränderter Rohbauöffnung wurden un-	
tersucht. Die Varianten unterscheiden sich im Glasanteil (Fixver-	
glasung versus öffenbar), Profilbreite und Art des Einbaus. Bei jed-	
er Variante verschlechtert sich die Tageslichtversorgung (erheblich).	
Diese Verschlechterung ist hauptsächlich auf den schlechteren	
Lichttransmissionswert, gegebenenfalls auf die Verkleinerung der	
Glaslichte und z. Teil auf die dickere Dämmstärke zurückzuführen.	
654: Durch sorgfältige Detailausbildung und die Wahl schlanker	145
Fensterprofile kann die Verschlechterung in Grenzen gehalten wer-	
den. Während bei einem Passivhausfenstertausch ohne weitere Op-	
timierung die Tageslichtverhältnisse um knapp 40 % schlechter	
werden, kann diese Verschlechterung bei sorgfältigster Detailaus-	
bildung und Ausschöpfen aller Möglichkeiten auf 25% reduziert	
werden. Dies ist allerdings immer noch ein völlig unzureichen-	
der Wert, zumal die Ausstattung mit Fenstern von Gebäuden	
aus den 50iger bis 80iger Jahren des vergangenen Jahrhunderts	
zumeist ausreichend, aber nicht großzügig erfolgte. Dies bedeutet,	
dass im Sanierungsfall zum Passivhaus die zukünftigen Belich-	
tungsverhältnisse sorgfältig zu prüfen sind und dass die Planer die	
Wirkung der für sie noch nicht so vertrauten Dreiffach-Verglasung	
nicht unterschätzen dürfen.	
655: Vergrößerung der Fensterfläche: Falls das Fenster nach un-	146
ten verlängert (durch Ausbrechen des Parapets) wird, gleichen die	
Lichtverhältnisse denen vor der Sanierung. Da im Passivhaus kein	
Heizkörper unter dem Fenster angeordnet werden muß, ist diese	
Maßnahme möglich.	
656: Eine weisse Wandfläche durch eine dunkle zu ersetzen resultiert	159
in einer Verschlechterung der Belichtungsverhältnisse um 15-20 %.	
Im Vergleich zum Aufwand der Maßnahme scheint die Wirkung	
groß zu sein. Wenn schlechte Verhältnisse vorhanden sind, kann	
durch farbige Oberflächen und dunkle Möbel noch viel zusätzlich	
verloren werden.	

Tab. 37: Hervorzuhebendes im Projekt "grünes LICHT, Sanierung eines großvolumigen Wohnbaues zum Passivhaus" – Fortsetzung.

Inhalt	Seite
657: Wenn ein Wohnraum nach heutigen Anforderungen mit ein-	163
er (zu) kleinen Fensteröffnung ausgestattet ist, muss bei der max-	
imal erzielbaren Glasfläche und dem maximalen Einstrahlwinkel	
angesetzt werden. Dies ist erzielbar 1. durch möglichst große Glas-	
flächen und möglichst geringen Rahmenanteil 2. durch Ausbrechen	
des Parapetes – möglich durch Verzicht auf Radiatoren- 3. durch	
Vergrößerung der Glasfläche über die Rohbauöffnung hinaus.	
658: Bedeutung des Balkons als wohnungseigener Freiraum: Für die	168
Zuwendung größerer Teile der Bevölkerung zu verdichteten Wohn-	
formen ist es mitentscheidend, ob es gelingt, manche Aspekte des	
Einfamilienhauses wie z.B. den wohnungseigenen Freiraum in guter	
Qualität auch im verdichteten Wohnbau anzubieten.	
659: Beim Bau von Balkonen geht es immer um ein Abwägen: Wie	170
viel Platz bekommt der Freiraum der oberen Wohnung und wie viel	
Einschränkung ist für die untere Wohnung ist zumutbar?	
660: Die Autoren des Berichts sind der Meinung, dass zugunsten	176
der Wohnqualität dem wohnungseigenen Freiraum und damit ein-	
er gewissen Verschlechterung der energetischen Performance der	
Vorzug gegeben werden muss. Dieser Mehrbedarf an Energie muss	
z.B. durch eine thermische Verbesserung der Gebäudehülle wieder	
ausgeglichen werden.	
661: Höhersetzen von Balkonen erscheint vielversprechendste Maß-	194
nahme für den kompakten Passivhauswohnbau überhaupt, um	
die Anforderungen großzügiger Freiraum und gute Belichtung	
verbinden zu können. Untersucht wurde ein Höhersetzen um 0,4	
m bei gleichzeitiger Verbreiterung der Fenster	

Beratungsthemen 4

In diesem Teil des Navigators werden ausgewählte Energieberatungsthemen auf der Basis der vorgestellten Projekttabellen diskutiert. Die Referenzierung durch Hyperlinks im folgenden Text bezieht sich somit auf die Tabellen aus dem Kap. 3, "Die Projekte".

Ein Beispiel:

Die Angabe Pr. "Ludesch", S. 14, Z. 60 bedeutet die Bezugnahme auf das Informationsmolekül 60 (= laufende Nummerierung der Zeilen in den Tabellen in Kap. 3) des Projektes "Neubau ökologisches Gemeindezentrum Ludesch". Die Seitenangabe "S. 14" bezieht sich auf die Seite dieses vorliegenden Dokuments und nicht auf die Seitenzahl des zugehörigen HdZ-Berichts.

Wie gelangt man von einem Hyperlink im folgenden Text zur jeweiligen Stelle im originalen HdZ-Bericht?

Am Computer Hyperlink anklicken, um zu dem zugehörigen Tabelleneintrag in diesem Dokument (Navigator) zu springen. Dort unter Drücken der Ctrl-Taste auf den Hyperlink klicken, der sich im zugehörigen Eintrag in der Spalte "Seite" befindet. Der zugehörige HdZ-Bericht sollte automatisch an der richtigen Stelle geöffnet werden. In einigen Fällen muß, nachdem sich das Berichtsdokument geöffnet hat, manuell auf die entsprechenden Seitenzahl gescrollt oder gesprungen werden (Sprung zu einer Seitenzahl in einem pdf-Dokument unter Acrobat Reader 8 aktivierbar durch die Tastenkombination "Shift-Ctrl-9")

In einem Ausdruck (Hardcopy) des vorliegenden Dokuments

- 1. Zugehörigen Tabelleneintrag in diesem Dokument durch Zurückblättern über die angegebene Seitenzahl finden (S. 14 in obigem Beispiel).
- 2. Dort in der jeweiligen Zeile (60 in obigem Beispiel) den zugehörigen Eintrag in Spalte "Seite" (Seitenzahl des HdZ-Berichts) ablesen und diese Seite im HdZ-Bericht aufschlagen.

Sollte ein Papierausdruck des HdZ-Berichts von der beiliegenden CD zu aufwendig sein - HdZ-Berichte können als Hardcopy fertig gebunden bei der ÖGUT angefordert bzw. erworben werden.

Ausnahme In Abweichung zu obiger Referenzierung wurde in einigen Fällen im folgenden Text nicht der Weg "Hyperlink \rightarrow Tabelle \rightarrow Seitenzahl des HdZ-Berichts" gewählt, sondern direkt die Seitenzahl des HdZ-Berichts angegeben. Die entsprechenden Stellen im folgenden Text sind daran zu erkennen, daß die Seitenzahlangabe nicht als Hyperlink ausgebildet ist. Dies erfolgte überall dort, wo auf einen HdZ-Bericht bezug genommen wird aber kein entsprechendes "Informationsmolekül" (Tabelleneintrag) erstellt wurde. Der Verzicht auf die Darstellung eines Umstandes als Informationsmolekül in den Tabellen erfolgte immer dann, wenn ein Umstand als nicht bedeutsam genug eingeschätzt wurde, alleinstehend hervorgehoben zu werden.

4.1 Lüftung

Praktisch alle beratungsrelevanten Lüftungsthemen wurden im Pr. "FH Kufstein" umfassend behandelt. Der dortige Wissenstand wurde mittlerweile aktualisiert. Die Ergebnisse finden sich dzt. vor allem auf www.komfortlüftung.at, wahrscheinlich ist dies in Zukunft auch die Bezugsquelle für weitere Aktualisierungen. Das Wissen wird in Form einer Ausbildungsoffensive an das einschlägige Gewerbe weitergegeben.

- 1. Kontakt im Osten: W. Leitzinger (AIT, Austrian Institute of Technology)
- 2. Kontakt im Westen: Andreas Greml (TB Greml)

Derzeit wird als "Folge" des Pr. "FH Kufstein" die einwöchige Ausbildung zum "Zertifizierten Lüftungsplaner" angeboten. Nähere Informationen bei wolfgang.leitzinger@ait.ac.at.

4.1.1 Werden im mehrgeschoßigen Passivhaus-Wohnbau und bei Bürogebäuden Erdreichwärmetauscher vorgesehen?

Auf den Einsatz eines Erdreichwärmetauschers wurde im Pr. "Ludesch", S. 14, Z. 60, sowie im Pr. "Utendorfgasse", S. 9, Z. 15, verzichtet. Der erforderliche Frostschutz des Wärmetauschers des Lüftungsgeräts wird über eine Vorheizung der Frischluft (elektrisch im Fall Pr. "Utendorfgasse" und Pr. "Mühlweg", über Heizungswasser im Fall Pr. "Ludesch") erreicht. Die hydraulische Installation für die Vorheizung über jenes System, mit dem Warmwasser bereitgestellt wird (v. a. als Gaskessel realisiert) wäre im Pr. "Utendorfgasse" und im Pr. "Mühlweg" teurer als die elektrische Vorheizung gekommen. Die Regelung des Frostschutzes erfolgt über die Temperatur der Zuluft. Fällt die Zulufttemperatur unter einen festgelegten Mindestwert, schaltet die Vorheizung zu.

Gründe für den Verzicht auf den Erdreichwärmetauscher:

- 1. Erzielbare (Invest)Kostenreduktion (v. a. Entfall der Grabarbeiten)
- 2. Mangelnder Platz für die Verlegung in der Umgebung des Gebäudes
- 3. Behördenauflagen hinsichtlich regelmäßiger Spülung und Reinigung (Pr. "Mühlweg", S. 35, Z. 242)

Im Pr. "S-House", S. 20, Z. 120 wurde hingegen nicht nur ein Erdwärmetauscher sondern auch ein Bypaß vorgesehen, um den Tauscher umgehen zu können.

4.1.2 Welche Lüftungskonzepte setzen sich im mehrgeschoßigen Passivhaus-Wohnungsneubau durch?

In den betrachteten Neubauprojekten überwog das "semizentrale" Konzept, dzt. lediglich von der Fa. Drexel u. Weiss angeboten, realisiert als Variante "Ein zentrales Gerät pro Objekt am Dach"; dort, über Dach, erfolgt auch die Luftansaugung (inkl. Vorheizung für Frostschutz). Beispiele: Pr. "Mühlweg", S. 35, Z. 243, Pr. "Utendorfgasse", S. 11, Z. 26.

Lüftungsstrategien an sich (z. B. wie erfolgt grundsätzlich die Zuluftversorgung und die Durchströmung aller konditionierten Bereiche) werden in Pr. "FH Kufstein", S. 13, Z. 51 erörtert.

Im Pr. "S-House", S. 20, Z. 116 wird ein Regelungskonzept einer Lüftungsanlage für die zwei Modi a) "nur Lüftung" b) "Lüftung und Heizung" beschrieben.

4.1.3 Welche Konzepte mechanischer Lüftung in der Sanierung?

Im Pr. "Altbausanierung mit PH-Praxis" wird der nachträgliche Einbau von Lüftungsanlagen am ausführlichsten unter allen gescreenten HdZ-Berichten diskutiert. Dabei wird auf österreichische, aber auch auf deutsche Sanierungsprojekte sowie auf Arbeiten des PHI bezug genommen:

Auf S. 26, Z. 169 wird erörtert warum in einem Sanierungsfall ein zentrales Konzept ("zentral" hier = eine zentrale Anlage pro Wohneinheit) als günstigste Variante resultierte. Ein tabellarischer Wirtschaftlichkeitsvergleich der beiden Varianten "Einzelraumgeräte" vs. "1 Zentralgerät pro Wohnung" findet sich auf S. 26, Z. 170.

bm 👽 🕕

4.1.4 Unkonventionelle Luftführungen in der Sanierungen

Im Pr. "Altbausanierung mit PH-Praxis", S. 27, Z. 174 wird die Luftführung über die Hohlräume einer nachträglich eingesetzten Hohldielenspannbetondecke erwähnt. Die Abluft wird in einem Schloss über bestehende Kamine abgeführt (Pr. "Altbausanierung mit PH-Praxis", S. 27, Z. 176).

4.1.5 Kann die Zuluftnachheizung auch nicht-elektrisch und nicht-hydraulisch erfolgen?

Siehe zu unterschiedlichen Möglichkeiten der Zuluftnachheizung auch den Punkt 4.1.9, S. 96. Im Pr. "S-House", S. 20, Z. 124, wurde eine Beheizung der Zuluft über Heißluft vorgesehen (→ Luft-Luft-Wärmetauscher). Die Heißluft wird in einem Stückholzkessel erzeugt und in die Abluft des Lüftungssystems zugemischt. Von dort gelangt die Wärme in den Wärmetauscher des Lüftungsgeräts, wo sie an die Frischluft übertragen wird.

4.1.6 Welche innovativen Ansätze zur Regelung des Luftvolumenstroms wurden umgesetzt?

Im Pr. "S-House", S. 20, Z. 115 wurde eine Regelung in Abhängigkeit von CO₂- und VOC-Konzentration eingerichtet.

Nachtlüftung in Bürohäusern Im Pr. "Weiz", S. 38, Z. 267, einem Pilotprojekt im Passivhausbürobau, wurde eine händische Nachtlüftung vorgesehen, die allerdings erforderte, daß Nutzer vor Büroschluß die Fenster kippen. Das Konzept scheiterte. Ebenso ist aber auch im später realisierten Pr. "S-House" S. 20, Z. 119 eine Nachtlüftung über freie Lüftung (geöffnete Fenster) vorgesehen.

4.1.7 Welche Bandbreite für den personenspezifischen Nichtraucher-Frischluftbedarf bei der Auslegung von Lüftungssystemen im Büro-Passivhaus ist anzutreffen?

Zugrundegelegt wurden im Pr. "S-House", S. 20, Z. 114 ein Luftbedarf von 25m³/h/Person, üblicherweise kommen 30m³/h/Person zur Anwendung. Im S-House wurde allerdings hohe Sorgfalt auf die Verwendung ökologischer Materialien gelegt, sodaß die Grundemissionsbelastung durch Baustoffe wesentlich geringer als üblich ausfällt.

4.1.8 Welche Bandbreite für die Maximaltemperatur in rein frischluftbeheizten Büro-Passivhäusern ist anzutreffen?

Im (fast) rein frischluftbeheizten Bürogebäude im Pr. "Ludesch", S. 14, Z. 65, wurde eine Maximaltemperatur von 22°C als ausreichend angenommen. Im Pr. "S-House", S. 20, Z. 121 liegt die Zulufttemperatur im Heizfall maximal 10°C über der Raumtemperatur. Im Pr. "Weiz", S. 37, Z. 262 beträgt die maximal benötigte Zulufttemperatur hingegen 45°C.

4.1.9 Möglichkeiten zur Vor- bzw. Nachheizung der Zuluft

Folgende "exotischere" Varianten der Zuluftvor- bzw. -nachheizung wurden in Projekten eingesetzt bzw. erörtert¹:

Vorwärmung der Frischluft vor dem Wärmetauscher, Frostfreihaltung

- 1. Im Pr. "Ludesch", S. 14, Z. 63: Direktes Anwärmen über Grundwasser, Sole aus Solarkollektoren und Abluft aus dem zentralen Serverraum.
- 2. Verwendung eines bestehenden alten Kanals aus Ziegeln als Erdwärmetauscher. Im Pr. "Altbausanierung mit PH-Praxis", S. 27, Z. 176 vorgestellt am Beispiel des Schlosses Schönbrunn.

Nachheizung der Zuluft

- 1. Bonsaiheizkörper unter den Zuluftauslässen: Pr. "Mühlweg", S. 35, Z. 240
- 2. Biomassespeicherofen: Pr. "S-House", S. 20, Z. 124
- 3. Solarthermie: Pr. "Das ökologische Passivhaus", S. 56, Z. 399
- 4. Lehmröhrenkanäle: Pr. "Tattendorf", S. 60, Z. 438
- 5. Bioäthanol: Pr. "Tattendorf", S. 60, Z. 441
- 6. Elektrische Nachheizung: Pr. "Weiz", S. 38, Z. 271
- 7. Propangas: Erörterung im Pr. "Das ökologische Passivhaus", S. 56, Z. 395.
- 8. Wenn Abluft- und Frischluftleitungen räumlich so weit getrennt sind, daß sie nicht in einem Wärmetauscher zusammengeführt werden können, Wärmetransport in diesem Fall von der Abluft im Dachbereich über ein Wasser/Glykol-Gemisch zur Frischluft im Keller (Pr. "Altbausanierung mit PH-Praxis", S. 26, Z. 163)

4.1.10 Einzelfragen zur Luftdichtheit

Ausführung der Durchdringung der Außenwand nach Stand der Technik Zwei grundsätzliche Möglichkeiten einer luftdichten Durchdringung der Außenwand (v. a. bei einer Durchführung eines Rohres) werden in Pr. "Wandsysteme aus Nawaros", S. 71, Z. 527 beschrieben.

Luftdichte Gebäudeeingangstüre Das Thema des höhenbedingten Druckunterschiedes in einem Stiegenhaus, das in das belüftete Volumen eingebunden ist, sowie die Bedeutung einer luftdichten Gebäudeeingangstüre bei mehrgeschoßigen Gebäuden wird in Pr. "Utendorfgasse", S. 10, Z. 17, erörtert.

Vermeidung des Einsatzes einer Luftdichheitsfolie im Holzbau Im Pr. "S-House", S. 17, Z. 93 wurde die Luftdichtheit unter Verzicht auf Folien und Schäume erreicht, im Gegensatz, z. B., zum Pr. "Ludesch", S. 17, Z. 86.

¹Die elektrische Variante wurde hier ebenfalls eingefügt.

4.2 Heiztechnik

4.2.1 Wurden rein frischluftbeheizte Passivhäuser gebaut?

Eine reine Frischluftbeheizung (keine aktiven Heizflächen) kam z. B. in folgenden Fällen zur Anwendung: Pr. "S-House", S. 20, Z. 123, Pr. "Weiz", S. 38, Z. 268, Pr. "Ludesch", S. 14, Z. 61 (mit der Ausnahme eines eingemieteten Physiotherapiebetriebes und des Eingangsfoyers), sowie im Pr. "Utendorfgasse".

4.2.2 Kam in Passivhaus-Bürohäusern Solarthermie zum Einsatz?

Im Pr. "S-House", S. 21, Z. 126 wurde Solarthermie ausschließlich für die Brauchwasserbereitung eingesetzt; die Wärme wird in einem 1500l -Speicher (!) gespeichert. Im heizungsunterstützenden Kombisystem im Pr. "Ludesch", S. 15, Z. 71, wurde die Solarwärme getrennt in einen Brauchwasserspeicher sowie in einen Pufferspeicher (speist die Fußbodenheizung) eingespeist.

4.2.3 Welche Variante für raumweise Heizflächen in Passivhäusern im mehrgeschoßigen Wohnbau ist aus wirtschaftlicher Sicht optimal?

Durch die Installation von Heizflächen und die raumindividuelle Temperaturregelbarkeit unabhängig von der Lüftung kann die Bemessung der aktuellen Zuluftmenge von der aktuellen Heiz-/Kühllast entkoppelt werden. So kann zu Zeiten niedriger Außentemperaturen und geringer Personenbelegungsdichte (→ geringer Feuchtigkeitsanfall, größeres Risiko zu trockener Luft bei unangepaßtem Luftwechsel) die Zuluftmenge der Personenbelegungsdichte angepaßt werden, ohne daß die Raumtemperatur unter die operative Auslegungstemperatur sinkt. Der gegenüber der reinen Frischluftheizung fehlende Heizwärmebedarf wird durch die Heizflächen ergänzt.

Umsetzungsvarianten der raumweisen Zusatzheizung über Heizflächen (Pr. "Mühlweg", S. 35, Z. 240) sind

- 1. "Bonsai"-Fußbodenheizung
- 2. "Bonsai"-Heizkörper, die knapp unter den Zuluftauslässen angebracht werden. Die entsprechenden wohnflächenspezifischen Mehrkosten für die Einrichtung der Möglichkeit zur raumweisen Temperaturregelung, also das Vorsehen regelbarer Heizflächen in den Räumen, werden in Pr. "Mühlweg", S. 36, Z. 254 mit einer Bandbreite von 10-20 €/m² angegeben.

4.2.4 Welche Modalitäten werden für die Abrechnung des Heiz- und Warmwasserwärmeverbrauchs bevorzugt?

Neubau In mehrgeschoßigen Passivhäusern werden Heizkosten tendenziell nicht nach Verbrauch abgerechnet, da die Vollkosten der meßtechnischen Erfassung über separate Wärmemengenzähler in der Größenordnung möglicher Differenzen in den Jahresraumwärmekosten liegen. So wird auch in Pr. "Hochbauplaner der Zukunft", S. 77, Z. 566 die wohnungsweise Abrechnung in einem Gesamtergebnis einer Expertengruppe als "Unsinn" bezeichnet. In Pr. "Mühlweg", S. 36, Z. 253 wird nach Wohnfläche abgerechnet.

Hingegen werden in Pr. "Mühlweg", S. 35, Z. 238 der Warmwasserwärmeverbrauch, der wesentlich höher als der Heizwärmeverbrauch ist, und auch der Kaltwasserverbrauch wohnungsweise nach tatsächlichem Verbrauch erfaßt und abgerechnet. Eine separate Abrechnung des Kaltwasserverbrauchs wird auch im Pr. "Das ökologische Passivhaus", S. 57, Z. 406 empfohlen.

Sanierung Für die Sanierung, in der meist nicht der Passivhausstandard erreicht wird, wird zumindest in Pr. "Altbausanierung mit PH-Praxis", S. 30, Z. 201, generell eine individuelle Abrechnung zu den Heizkosten als Feed-Back an die Nutzer empfohlen.

4.2.5Wurde Latentwärmespeicherung eingesetzt?

Im Pr. "Altbausanierung mit PH-Praxis", S. 29, Z. 193 wurde Latentwärmespeicherputz sowie im Pr. "Altbausanierung mit PH-Praxis", S. 30, Z. 198 (über vorgefertige Platten) eingesetzt (→ Bautechnik), im Pr. "Ludesch", S. 15, Z. 70 ein Latentwärmespeicher (\rightarrow Heiztechnik).

4.2.6 Wurde im Neubau auch eine rein-elektrische Warmwassererzeugung eingesetzt?

Bürogebäude: Eine Simulation der Verluste über die Leitungslängen ergab in Pr. "Ludesch", S. 15, Z. 72, daß für Kleinteeküchen eine dezentrale Versorgung über Untertischboiler energetisch günstiger kommt.

4.2.7Ist die Direktwarmwasserversorgung von Geschirrspülern und Waschmaschinen im mehrgeschoßigen Wohnbau ein Thema?

Eine Direktwarmwasserversorgung von Geräten mit Warmwasserbedarf wurde in Pr. "Mühlweg", S. 35, Z. 245 sowie in Pr. "Schiestlhaus", S. 54, Z. 386 vorgesehen. Ebenso wurden wassersparende Armaturen und Spülsysteme (S. 35, Z. 248) eingesetzt.

4.2.8Wie wird in der Sanierung mit raumluftabhängigen Feuerstätten umgegangen?

Das Problem der nach der Sanierung gestiegenen Luftdichtheit in Verbindung mit raumluftabhängigen Feuerstätten wird im Pr. "San. Makartstraße", S. 59, Z. 430 erörtert.

4.2.9 Wie sicher ist es, auf die Herstellung eines neuen Fernwärmeanschlusses bei Passivhäusern zu setzen?

In Pr. "Mühlweg", S. 35, Z. 246 fehlte im Projektverlauf die verbindliche Zusage seitens der Fernwärme Wien zur Herstellung eines Fernwärmeanschlusses, sodaß schließlich eine Gasbeheizung vorgesehen wurde. Im Pr. "Ludesch", S. 15, Z. 71 war die Anbindung an die Biomassenahwärme ebenfalls nicht sicher planbar.

4.2.10 Völliger Stromausfall in einem rein frischluftbeheizten Passivhaus in der Kernheizperiode: wie rasch kühlt das Objekt aus?

Diese Problemstellung und die rechnerischen Konsequenzen (Planungs- keine Meßwerte) werden in Pr. "Utendorfgasse", S. 11, Z. 31, in aussagekräftigen Temperaturverlaufsdiagrammen dargestellt.

Wesentlichste Aussagen (Wiener Klima, Jänner):

- 1. Die operative Raumtemperatur sinkt innerhalb einer Woche nach Stromausfall von 22°C auf 16°C.
- 2. Die "Leerlauftemperatur", auf die sich die Rauminnentemperatur einpendelt, beträgt 10°C.
- 3. Das Aufheizen auf die Solltemperatur von 22°C, sobald wieder Strom verfügbar ist, dauert ca. 1 Monat (Aufheizperiode im Februar).

4.2.11 Auf welche operative Innentemperatur wurden die Passivhausprojekte ausgelegt?

Eindeutig erwähnt wurde die Auslegungstemperatur mit 22°C, also bewußt von dem als unrealistisch niedrig empfundenen Standardplanungswert von 20°C (Stand 2009) abweichend, im Pr. "Utendorfgasse", S. 10, Z. 25.

4.3 Fenster

4.3.1 Wärmebrückenauswirkung unterschiedlicher Fenstermontagearten

Unterschiedliche Varianten der Befestigung des Fensters in der Außendämmebene wurden in Pr. "Utendorfgasse", S. 9, Z. 5 über Wärmebrückensimulation untersucht. Fazit: die Unterschiede hinsichtlich des Wärmebrückenverhaltens sind vernachlässigbar.

4.3.2 Einsatz PHI-zertifizierter Fenster

Vorangestellt sei kommentarlos ein Zitat der Fa. Internorm aus dem Pr. "Altbausanierung mit PH-Praxis", S. 30, Z. 199: "Es ist zwischen zertifizierten Passivhausfenstern (nach Feist) und passivhaustauglichen Fenstern zu unterscheiden."

- 1. Im Pr. "Utendorfgasse", S. 8, Z. 4 wurden PHI-zertifizierte Fenster in eine umfassende Untersuchung zu Kosten, Montagearten und Schallschutz einbezogen.
- 2. Schwierigkeiten, PHI-zertifizierte Fenster unter speziellen Anforderungen im mehrgeschoßigen Wohnbau in Wien zu erhalten, enstanden im Pr. "Mühlweg" (S. 18 u. S. 28).
- 3. Im Pr. "PH-Kindergarten Ziersdorf", S. 59, Z. 433 sowie im Pr. "San. Pettenbach" (S. 68) wurden PHI-zertifizierte Fenster eingesetzt.
- 4. Im Pr. "Das ökologische Passivhaus", S. 30, wird in einem Bericht eines deutschen Architekten ein PHI-zertifiziertes Fenster erwähnt, das der Autor selbst mitentwickelt hat.

Zur PHI-Zertifizierung siehe auch 4.4.4, S. 101.

4.3.3 Fenster und Kosten

In Pr. "Mühlweg", S. 36, Z. 251 werden Kostenangaben zu PH-Fenstern für Großabnehmer gemacht: $280, - \in /m^2$.

4.4 Sonstige Baukonstruktionen

4.4.1 Welche bewußten Abweichungen von "konservativen" Regeln des solaren Bauens wurden gemacht?

Im Pr. "Ludesch", S. 17, Z. 89, wurden bewußt aufgrund des gewünschten Tageslichteinfalls größere Glasflächen nach Norden hin vorgesehen.

4.4.2 Wie erfolgte der Einsatz von PHPP sowie dynamischer Gebäudesimulation?

Im allgemeinen wird das PHPP für den Nachweis des Passivhausstandards (Winterund Sommerfall) eingesetzt, im wesentlichen also zur Bestimmung der Gebäudeheizlast, des Jahresheizwärmebedarfes sowie zur Ermittlung der Anzahl der Stunden, in denen die Maximalinnentemperatur überschritten wird (sommerliche Überwärmung). Die dynamische Gebäudesimulation wird hingegen zur Detailplanung des Gebäudes in bezug auf die Einzelraumauslegung angewendet. In bezug auf Parameter, die das gesamte Gebäude betreffen, werden die Ergebnisse aus PHPP-Berechnung und dynamischer Gebäudesimulation (sofern im jeweiligen Projekt erfolgt) verglichen. Das PHPP wurde im Pr. "Ludesch", S. 16, Z. 80, für den Passivhausnachweis verwendet, für die Gebäudeplanung hingegen wurde TRNSYS eingesetzt. Eine gute Kurzbeschreibung von TRNSYS findet sich in Pr. "Biomassefeuerungen für Objekte mit niedrigem Energiebedarf", S. 74, Z. 549.

Im Pr. "San. Tschechenring", S. 76, Z. 564 wurde das PHPP eingesetzt, um den Nachweis der Sommertauglichkeit zu erbringen. Im Pr. "San. Schwanenstadt", S. 67, Z. 491 wurde das PHHP zur Bestimmung der Gebäudeheizlast bei unterschiedlichen Randbedingungen hinsichtlich des Wärmeentzugs durch Grundwasser eingesetzt. In Pr. "San. Makartstraße", S. 24, Z. 145, wurde das PHPP auf ein Bürogebäude angewendet, die Feinoptimierung hinsichtlich der Planung erfolgte mit TRNSYS. Im Pr. "Utendorfgasse", S. 10, Z. 22 wird das PHPP nicht explizit erwähnt, obwohl es sich um ein Pilotprojekt im Passivhausbereich handelt; es bleibt offen, ob das PHPP eingesetzt wurde.

Interessant ist die Abweichung der Ergebnisse zwischen PHPP und TRNSYS in bezug auf die Heizlast im Pr. "PH-Kindergarten Ziersdorf", S. 59, Z. 432, wobei zu berücksichtigen ist, daß die Berechnungsmethode der beiden Softwares bei der Ermittlung der Heizlast unterschiedlich ist. Die Berechnung nach PHPP (Version 2002) ergab so eine um 10% verminderte Heizlast verglichen mit dem TRNSYS-Ergebnis.

Die mittels PHPP in der ermittelten Planungswerte zu Jahresheizwärmebedarf und Heizlast wurden bei jenen Gebäuden, die meßtechnisch evaluiert wurden, mit den Meßwerten verglichen.

4.4.3 Vermeidung sommerlicher Überwärmung durch sorgfältige Planung im Holzbau

Im Pr. "Christophorushaus", S. 30, Z. 204 wurde ein hohes Risiko sommerlicher Überwärmung in einer ersten Simulation festgestellt. Erst nach verschiedenen Optimierungsschritten (S. 31, Z. 209) konnte der geforderte Planwert erreicht werden.

4.4.4 Welche Rolle spielte bei Passivhausprojekten die PHI-Zertifizierung?

Gebäude insgesamt Das deutsche PHI bietet die Zertifizierung von Passivhäusern gemäß einer selbstentwickelten Methode an. In Österreich wird diese Zertifizierung von Lizenznehmern, z. B. vom IBO angeboten.

- 1. Die einzige im zugehörigen Bericht explizit erwähnte Zertifizierung eines Hauses wurde für das Pr. "Christophorushaus", S. 30, Z. 203 gefunden. Die Zertifizierung wurde vom PHI direkt durchgeführt.
- 2. Im Pr. "Hochbauplaner der Zukunft" wird allerdings auf S. 28. für das Pr. "Utendorfgasse" angegeben, daß das Gebäude PHI-zertifiziert ist.
- 3. Im Pr. "San. Schwanenstadt" wird auf Seite 84 im Zusammenhang "Grundwasser ⇔ Bodenplatte" sowie Passivhausanforderungen die Anmerkung "Probleme Zertifizierung?" gemacht, sodaß davon ausgegangen wird, daß dieses Gebäude ebenfalls zertifiziert wurde.

Dem Thema Gebäudezertifizierung im allgemeinen (nicht auf das PHI-Zertifikat eingeschränkt) ist im Pr. "Das ökologische Passivhaus" ein eigener Artikel von Dr. Susanne Geissler mit dem Titel "Gebäude-Qualitätszertifikat – Bewertung von Gebäuden als Grundlage für die Erstellung von Qualitätszertifikaten " gewidmet. In diesem Bericht von 2001, einer Sammlung mehrerer Einzelartikel, wird auch das Thema "Total Quality Management" angesprochen (Artikel von Manfred Bruck) sowie die ökologische Bewertung von Passivhäusern (Artikel von Burkhard Schulze-Darup).

Im Pr. "Altbausanierung mit PH-Praxis", 2004, wurde eine Übersicht damals verfügbarer PHI-zertifizierter Komponenten zusammengestellt (S. 59ff).

4.4.5 Welche Rolle spielte bei Passivhausprojekten die klima:aktiv-Zertifizierung?

Das sanierte Gebäude im Pr. "San. Pettenbach" wurde mit der "Beta-Version 3.0 des vom klima:aktiv haus Schirmmanagement ausgearbeiteten Kriterienkatalogs" zertifiziert (S. 52, Z. 362).

4.4.6 Können Technikleitungen in der außenliegenden Wärmedämmschicht (WDVS) geführt werden?

In Pr. "Einfach: wohnen", S. 85, Z. 618 wurden die Leitungen des Solarkollektorkreises im WDVS geführt. Im Pr. "Katalog der Modernisierung v. Objekten aus 50er und 60er Jahren", S. 50, Z. 340, wurde ein Konzept vorgestellt, in dem die Zuluftkanäle der Lüftung in der Fassadenwärmedämmung verlaufen.

bm 👽 🕕

4.4.7 Gibt es in der Sanierung Probleme bei der Befestigung einer vorgehängten Fassade?

Im Pr. "San. Makartstraße" S. 58, Z. 411, sowie im Pr. "San. Pettenbach" stellte sich die Außenwand als porös heraus, sodaß eine sorgfältige Planung der Aufhängungspunkte erforderlich war.

4.4.8 Soll das Stiegenhaus in die thermische Hülle einbezogen werden oder nicht?

Neubau, mehrgeschoßiger Wohnbau Im Pr. "Utendorfgasse", S. 10, Z. 16, wird im Neubau die Lösung gefunden, das Stiegenhaus zwar nicht zu beheizen, es aber in die thermische Hülle sowie in das Be- und Entlüftungssystem einzubinden. Diesem Ergebnis gehen einige Simulationen zur Dämmstärke und Einbeziehen des Stiegenhauses in die thermische Hülle bzw. Ausschließen aus dieser voraus. Die Dämmschichte wird also als Außendämmung an der Außenwand des Stiegenhauses geführt.

Sanierung Im Pr. "San. Makartstraße", S. 58, Z. 414, wurde aufgrund von Platzmangel im Stiegenhaus für eine Dämmschichte das Stiegenhaus ebenfalls von außen gedämmt.

4.5 Ökologisches Bauen

4.5.1 Inwieweit nahmen Projekte besonders auf die ökologischen Auswirkungen der eingesetzten Baustoffe Rücksicht?

Nawaros als Wärmedämmung im Stopfbereich Im Pr. "S-House", S. 17, Z. 91 wurden die Fenster mit Flachs abgedichtet. Im Pr. "Ludesch", S. 17, Z. 84, erfolgte diese Abdichtung mit Schafwolle.

Einsatz von Nawaros als Befestigungsmittel, bzw. Verzicht auf Metallkonstruktionen, Nawaro-Rohrsysteme Im Pr. "S-House", S. 18, Z. 101 wurden neuentwickelte Biopolymer-Schrauben für die Montage der Lattung der hinterlüfteten Holzfassade eingesetzt. Die Fassadenbretter (sägeraue Fichtenbretter) wurden mittels Leim und Holzdübeln (S. 19, Z. 108), die Strohballen mit Schnüren, die ebenfalls an verankerten Holzdübeln festgebunden wurden (S. 19, Z. 109), fixiert. Die Kabeltrassen für die Lüftung (S. 20, Z. 117) wie auch die Elektroleitungen (S. 21, Z. 130) wurden aus Holz gefertigt. Im Pr. "Christophorushaus", S. 31, Z. 207, wurden stahlfreie Deckenauflager eingesetzt. Im Pr. "San. Schwanenstadt", S. 65, Z. 484 war dies ein Bestreben, konnte aber nicht erreicht werden.

Ersatz von Holz durch Holz unter ökologischen Kriterien Im Pr. "Christophorushaus", S. 31, Z. 206 wurde Voll- statt Brettschichtholz im Bereich der Stützen verwendet.

Einsatz ökologischer Baustoffe als Teil der Ausschreibung Im Pr. "Ludesch". S. 14, Z. 57, wurde eine "doppelte Ausschreibung" durchgeführt (neben der ökologischen auch zwingend auch Anbot zu einer konventionellen Variante). Im Pr. "SOL4", S. 25, Z. 152, wird erwähnt, daß die Anforderung PVC- und Halogenfreiheit leicht gewährleistet werden konnte. Im Pr. "SOL4" wird in S. 24, Z. 147, ein Aufwand von vier Stunden für die Überprüfung der Halogenfreiheit der für die Elektrikerarbeiten angegebenen Produkte vermerkt.

Wie wurden Ausführende in das Thema ökologische Baustoffe eingebunden? Im Pr. "Ludesch", S. 14, Z. 58 wurde ein Infoabend für die Arbeiter nach Baustellenbeginn zur nachträgliche Aufklärung durchgeführt, nachdem erkannt wurde, daß dies erforderlich ist.

Kontrolle am Bau Im Pr. "Ludesch" erfolgte auch eine ausführliche Kontrolle der Einhaltung der Vorgaben hinsichtlich ökologischer Baustoffe durch eine spezielle Baustellenaufsicht (S. 15, Z. 74).

4.5.2 Inwieweit wurden Berechnungen und Simulationen eingesetzt?

Einsatz von Software und Bewertungstools Im Pr. "Ludesch", S. 13, Z. 53 die Softwares Simapro 5.0 und Ecosoft eingesetzt, der IBO-Passivhaus-Bauteilkatalog 2004 sowie der Vorarlberger "Ökoleitfadens: Bau" als Ergänzung (S. 13, Z. 55).

Bewußter Einsatz einer Ökobilanz zur Auswahl der Baustoffe Im Pr. "Einfach: wohnen", S. 86, Z. 620 wurde bewußt auf den Einsatz von Recycling-Ziegeln verzichtet, als nach Erstellung einer Ökobilanz klar wurde, daß der Einsatz neuer Hochlochziegel, die allerdings in der näheren Umgebung produziert wurden, eine geringere negative Umweltauswirkung hatte. Weißtanne aus lokaler Herkunft wurde im Pr. "Ludesch", S. 14, Z. 56 eingesetzt. Im selben Projekt, S. 17, Z. 87 wurden massive Holzsteher trotz geringfügig höherer Wärmebrückenwirkung eingesetzt, das eregional verfügbar waren. Im Pr. "S-House", S. 19, Z. 110 wurde darauf geachtet, daß der erforderliche Lehm vor Ort gewonnen wurde. Im Pr. "Ludesch", S. 13, Z. 54 wurde die Frage kurz angerissen, was in ökologisch-ökonomischer Hinsicht günstiger sei - Gipskarton- oder Gipsfaserplatten.

Bewußte Reduktion des Materialeinsatzes Im Pr. "S-House", S. 19, Z. 107, wurden Punktfundamente eingesetzt.

In welchen Projekten wurden Mehrkosten für eine ökologische Variante angegeben? Mehrkosten werden angegeben im Pr. "Ludesch", S. 15, Z. 68 sowie in Pr. "San. Pettenbach", S. 53, Z. 375. In Pr. "Ludesch", S. 15, Z. 67 werden für die Materialkosten alleine lediglich 1,9% Mehrkosten angegeben.

Kostenranking zu Bauweise Für Wien wurde ein Kostenranking für die drei Hauptbauweisen für den Zeitraum 2005 - 2008 (Abgabe Endbericht) in Pr. "Mühlweg", S. 36, Z. 252 angegeben:

- 1. Holz-Mischbauweise (am teuersten) und im Projekt realisiert
- 2. Holzriegelbauweise (10% teurer als Massivbauweise)
- 3. Massivbauweise

4.6 Vakuumdämmung

In einigen "Haus der Zukunft"-Projekten (siehe Frage 4.6.8) wurden (und werden noch) Erfahrungen mit dem Einsatz von Vakuumdämmung gesammelt. In diesem Abschnitt werden einerseits diese Ergebnisse dargestellt, aber auch Erkenntnisse aus anderen Projekten und Forschungsprogrammen (Schweiz, Deutschland) integriert. Ein Vakuumisolationspaneel (VIP) besteht aus einem Kernmaterial (Kieselsäure), welches in einer Vakuumkammer in ein hoch gasdichtes Hüllmaterial eingeschweißt wird. Ohne Einfluß des Wärmebrücken-Randeffekts erreichen gut evakuierte VIP nach der Herstellung eine Wärmeleitfähigkeit von $4 \times 10^{-3} \text{ W/mK}$. Aufgrund der sehr guten Dämmeigenschaften von VIP können sehr schlanke Konstruktionen realisiert werden. Diesem Vorteil des Einsatzes von Vakuumdämmung im Gebäudebereich stehen jedoch folgende grundsätzliche Einwände gegenüber:

- 1. Fehlendes Vertrauen in die praktische Anwendbarkeit (Befestigung, langfristige Stabilität der Dämmwirkung) der Vakuum-Dämmtechnologie
- 2. Fehlendes / mangelhaftes Know-How innerhalb der Baubranche
- 3. Teilweise fehlende behördliche Zulassungen (TBD: noch zu recherchieren)
- 4. Hohe Kosten (siehe Frage 4.6.6).

4.6.1 Wann ist es vorteilhaft, Vakuumdämmung einzusetzen?

- Bei beschränktem Platzangebot bzw. falls auf möglichst geringen Raumbedarf durch eine Dämmung Wert gelegt wird. (z.B. Platzbeschränkung durch Einbauhöhe einer existierenden Terassentür, siehe Abb. 1)
 Abbildung 1: Terasse vor thermischer Sanierung, Quelle: Ferle and Essl [2004], S. 25.
- 2. Bewahrung des optischen Erscheinungsbildes / möglichst geringer Eingriff in das optische Erscheinungsbild Ein Beispiel für diesen Fall ist die (weitgehende) Wahrung der bestehenden Außenabmessungen zu einem Nachbarobjekt wie im Fall der thermischen Sanierung einer Doppelhaushälfte (siehe Abb. 2). Die bestehende Dämmung wurde abgebaut und durch Aufbau mit Vakuumdämmung ersetzt ohne bzw. mit geringfügiger
 - Änderung der Außenabmessungen (Ferle and Essl [2004], S.7, S. 41) Abbildung 2: Thermische Sanierung der rechten Doppelhaushälfte mit VIP, Quelle: Ferle and Essl [2004], S. 41
- 3. Thermische Sanierung besonders problematischer Bereiche (z.B. Balkone, Betonpfeiler)
 - Im Projekt Lang et al. [2004] wurde mit Hilfe von Wärmebrückensimulationen der Einsatz verschiedener Dämm-Varianten für den Bereich der Stahlbetonstützen (Vakuumdämmung versus konventionelle Überdämmung) untersucht (Lang et al. [2004], S. 87ff.). Zur Sanierung von Balkonen siehe die nächste Frage 4.6.2 weiter unten.

Abb. 4.1: Schule in Schwanenstadt vor thermischer Sanierung, deutlich erkennbar sind die Stahlbetonstützen. Quelle: Lang et al. [2004].

4.6.2 In welchen Konstruktionsbereichen kann die Vakuumdämmung eingesetzt werden?

Mögliche Einsatzbereiche sind Terassen, Balkone, Böden, aber auch Flachdächer oder sogar Außenwände. Folgende Beispiele stammen aus "Haus der Zukunft"-Projekten:

Dämmung der Kellerdecke auf der Oberseite Bei der Sanierung eines Einfamilienhauses in Pettenbach (Lang et al. [2007]) entschied man sich im Bereich der Unterkellerung aufgrund der mit 17 cm begrenzten Aufbauhöhe für eine Vakuumdämmung, um die Passivhauskriterien (U-Wert Kellerdecke von kleiner 0,15 W/) einhalten zu können.

Zur Verlegetechnik: Zur Wand hin wurden Restfelder mit 20 mm EPS-Platten ausgefüllt, um kostensparend mit VIP-Standardformaten das Auslangen zu finden. In der nächsten Lage wurden die EPS-Restfelder mit VIP-Platten stoßversetzt und überlappend überdeckt, und die übrige Fläche mit 20 mm EPS ausgelegt (siehe Abb. 4).

Abbildung 4: Dämmung der Oberseite der Kellerdecke im EFH Pettenbach, Quelle: Lang et al. [2007], S. 81,82.

Thermische Sanierung von Balkonen Im Fall der Sanierung einer Doppelhaushälfte mit VIP in Salzburg (Ferle and Essl [2004], S. 38f.) wurde die auskra-

gende Balkonplatte im Bereich von ca. 80 cm ab Außenwand mit VIP, danach mit aluminium-kaschierten PUR-Platten umlaufend (ober- und unterseitig) gedämmt (siehe Abb. 5). Die Balkonplatte hätte nur unter großem finanziellem und technischem Aufwand vom Bestand thermisch entkoppelt werden können. Auch die Möglichkeit einer Balkonverglasung wurde aus Kostengründen verworfen.

Abbildung 5: Vertikalschnitt der VIP-Überdämmung eines Balkons, Quelle: Ferle [2007], Folie 12

Flachdächer / Terassen Das Flachdach und die Terasse wurden im HdZ-Projekt P32 (Ferle and Essl [2004]) mit dem "3D Dachsystem" gedämmt (Abb. 6). "3D" steht für Dünn, Dicht und hoch WärmeDämmend. Das patentierte System besteht aus den drei Bestandteilen:

- 1. Vakuumdämmung (2 x 25 mm bzw. 1 x 25 mm und 1 Schicht PUR-Platten)
- 2. reaktive 2-Komponenten Bitumenmasse
- 3. oberste Schutzschicht bzw. Gehbelag

Auf die Geschoßdecke wird nach Anbringen einer Dampfsperre eine selbstnivellierende 2-Komponenten Kaltbitumenvergussmasse mit steuerbarer Abbindezeit aufgebracht (Ferle and Essl [2004], S. 16f., S. 23-27). Folgende Vorteile hat die ursprünglich für den Straßenbau entwickelte kalt verarbeitbare bituminösen Masse:

- 1. im Gegensatz zum Flämmen von Bitumenbahnen keinerlei Wärmezuführung für die Verarbeitung notwendig (Energieeinsparung)
- 2. ungefährliche und einfache Handhabbarkeit (keine Verbrühungs- und Verbrennungsgefahr, keine gefährliche Ausgasung und Dampfentwicklung).

Dieser Untergrund bietet Schutz für die zweilagig, stoßversetzt verlegten je 25 mm dicken Vakuumdämmplatten (die zweite obere Lage kann auch aus aluminiumkaschierten PUR-Platten bestehen). Die Vakuumdämmplatten werden Zug um Zug in die Bitumenmasse eingeschlämmt. Dadurch ist die Dichtheit der Konstruktion, selbst bei Verletzung der obersten Ebene, gewährleistet. Als oberste Schutzschicht können sämtliche handelsüblichen Werkstoffe, wie z.B. beschieferte Dachbahnen, etc. aufgebracht werden. Die gesamte Konstruktion hat mit dem erwähnten zweilagigen Aufbau eine gesamte Schichtdicke von nur ca. 6 cm und entspricht einer Wärmedämmung mit "konventionellen" Dämmstoffen von ca. 40 cm. Somit sind U-Werte von unter 0,10 W/mit 6cm Aufbauhöhe realisierbar (Ferle and Essl [2004], S. 17.).

Abbildung 6: Schichtaufbau des "3D Dachsystems" (von unten nach oben): Dampfsperre, Kaltbitumenvergußmasse, erste Dämmschicht (VIP), Kaltbitumenvergußmasse, zweite Dämmschicht (PUR-Platten), oberste Schutzschicht (nicht abgebildet), Quelle: Ferle and Essl [2004], S. 25

Fassade Verschiedene Befestigungssysteme von VIP kommen für Fassaden zur Anwendung. Im Projekt P32 (Ferle and Essl [2004]) wurde ein spezielles mechanisches Befestigungssystem für VIP-Platten verwendet (siehe Abb. 7). Dieses Befestigungssystem ermöglicht, ein Mischsystem aus VIP und PUR-Hartschaumplatten zweilagig mechanisch an – vor allem vertikalen - Bauteiloberflächen zu befestigen und mit einer beliebigen Fassade (Putz, Metall, Holz, etc.) zu versehen. Das Mischsystem aus VIP und PUR-reduziert den Anteil der Vakuumdämmung auf bis

zu 55% und macht gleichzeitig die teuren Sonderformate bei VIP überflüssig. In der ersten Ebene werden - so weit wie möglich - VIP in Standardformaten verlegt, Passstücke für die erste Ebene werden aus PUR angefertigt und in der zweiten Ebene mit VIP überdeckt (der Rest der zweiten Ebene wird mit PUR-Platten überdeckt). Wärmebrücken werden dadurch entschärft. Das Mischsystem reduziert die Kosten (Entfall teurer Sonderformate für Paßstücke bei den VIP) und vereinfacht das Handling auf der Baustelle. Es konnte der bauphysikalische Nachweis erbracht werden, daß unter Einbeziehung und Schaffung stehender Luftschichten in Plattenzwischenräumen (abgeklebte Luftzwischenräume zwischen den VIP) die mittleren Wärmedurchgangswerte nur unwesentlich schlechter sind als bei einer geklebten Konstruktion.

Abbildung 7: Demonstration des mechanischen Befestigungssystems an einem Versuchsaufbau; linkes Bild: erste Lage mit VIP, Bohrungen für Dübel; rechtes Bild: Montage der zweiten Ebene, überdeckende PUR-Platte , Quelle: Ferle [2007], Folie 7

Ausführung des Befestigungssystems:

- 1. In einem ersten Arbeitsschritt wird als Schutzschicht und Haftgrund für die VIP eine 2 cm dicke EPS Schicht mittels Dispersionskleber auf den vorhandenen Untergrund aufgeklebt. Auf der Styroporschichte werden der Raster für die Dübelung erstellt und anschließend die erforderlichen Bohrlöcher ausgeführt.
- 2. Mit doppelseitigem Klebeband wird sodann die Lage VIP auf die EPS-Lage aufgeklebt und die dabei zwischen den VIP entstehenden Stoßfugen an der Außenseite der VIP wieder mit doppelseitigem Klebeband abgeklebt. Durch fertigungsbedingte Maßtoleranzen der VIP liegen die Fugengrößen zwischen 4 und 10 mm.
- 3. Danach werden Spezialdübel in die Bohrlöcher versenkt. Die Dübel befinden sich an der Ecke der VIP (wo vier VIP aneinandergrenzen, Abb. 8). Im Bereich der Dübel, wo das Klebeband durchstoßen wurde, wird mittels Luftdichtheitsmasse ein Luftabschluß hergestellt (Abb. 8).
- 4. Als letzte Schicht wird eine Lage PUR-Platten stoßversetzt zur VIP-Lage aufgeklebt (Abb. 9). Stellen, die in der ersten Lage mit PUR-Platten belegt sind, werden mit VIP überdeckt. Die Fugen werden mit einem alubeschichtetem Klebeband abgedeckt. Anschließend werden die vorgebohrten Lattungen verschraubt, welche als tragfähiger Untergrund für die Cem-Board Platten fungieren (Abb. 10).

Abbildung 8: Einbringen von Luftdichtheitsmasse im Bereich der Dübel, Quelle: Ferle and Essl [2004], S. 31

Abbildung 9: Einsetzen alukaschierter PUR-Platten in der zweiten Ebene, Quelle: Ferle and Essl [2004], S. 31

Abbildung 10: Montage der Cem-Board Platten (Außenhülle), daneben ist noch die Lattung und die zweite Dämmebene zu erkennen , Quelle: Ferle and Essl [2004], S. 32

Weitere Möglichkeiten für die Befestigung von VIP an Fassaden sind Schienen-Befestigungssysteme oder die Verwendung geschützter / vorgefertigter Elemente mit VIP.

In einem Pilotprojekt wurde ein denkmalgeschütztes Einfamilienhaus in Nürnberg unter Verwendung von VIP gedämmt (Schwab et al. [2003], S. 2-7). Vorgabe war in diesem Fall, daß das anzubringende Dämmsystem eine Gesamtdicke von 6 cm nicht

überschreiten darf, damit der typische Dachüberstand noch erhalten bleibt. Ein VIP-Wärmedämmverbundsystem unter Verwendung von PVC-Schienen kam zur Anwendung (Abb. 11). Nach Aufbringen einer Dampfsperre und der horizontal montierten Schienen werden die VIP in die Schienen eingestellt und XPS-Putzträgerplatten davor gesetzt. Die XPS-Platten sind mit einer Nut versehen, so daß die XPS-Platten mit der Nut ebenfalls in die Schiene eingesteckt werden können. Zusätzlich werden die VIP mit je einem Klebepunkt an der Wand und die XPS-Platten an den VIP verklebt. Eventuell auftretende Fugen zwischen VIP werden mit Bauschaum verschlossen. Eine Verbesserung des U-Werts von vorher $0,7~\mathrm{W/(m^2 \cdot K)}$ auf $0,19~\mathrm{W/(m^2 \cdot K)}$ konnte erreicht werden.

Abbildung 11: Konstruktionsskizze des bei der Sanierung eines Einfamilienhauses in Nürnberg angewandten VIP-WDVS mit PVC Schienensystem, Quelle: Schwab et al. [2003], S. 3

VIP können durch Verwendung von Hüllmaterialien geschützt werden, z.B. durch Kaschierung mit EPS (Abb. 12), wodurch sich ein unproblematischerer Umgang mit dem Material auf der Baustelle ergibt. Eine weitere Möglichkeit der Erleichterung der Abläufe auf der Baustelle besteht in der Verwendung vorgefertigter Fassadenelemente (Abb. 13).

Abbildung 12: Mit EPS kaschiertes VIP, rechts Skizze eines WDVS mit EPS-kaschierten VIP, Quelle: Schwab et al. [2003], S. 3

Abbildung 13: Vorgefertigtes Fassadenelement mit VIP, Quelle: Schwab et al. [2003], S. 3

Innendämmung Vakuumdämmplatten sind prinzipiell auch für Innendämmung anwendbar, wie in einem in der Schweiz ausgeführten Pilotprojekt demonstriert wurde (Binz et al. [2005], S. 27-31). Hier wurde versucht, mit Innendämmung einen sehr hohen Dämmstandard (in Richtung Passivhausstandard) zu erreichen. Die bauphysikalischen Risiken bei Realisierung einer Innendämmung gelten auch für den Einsatz von VIP, sogar noch in verschärftem Ausmaß. Zur Entschärfung der Risiken werden folgende Maßnahmen empfohlen (Binz et al. [2005], S. 30):

- 1. Flankenwärmedämmungen (Dämmstreifen entlang von Decken und Wandanschlüssen)
- 2. Schwächung der Dämmschicht (!) entlang der Wärmebrücken. Dadurch wird an kritischen Stellen die Temperatur etwas erhöht und das Kondensatrisiko vermindert.
- 3. Verwendung von rauminnenseitigen Oberflächenmaterialien mit gutem Feuchtepufferverhalten. Diese vermindern zwar nicht Kondensathäufigkeit und –menge, aber den Pilzbefall.
- 4. Ausstopfen von Hohlräumen in Decken (v.a. im Bereich von Balkenköpfen)
- 5. Einbau einer kontrollierten Wohnraumlüftung (zur Entfeuchtung)

4.6.3 Was ist beim Umgang mit Vakuum-Dämmplatten besonders zu beachten?

Der Einsatz von VIP im Baubereich setzt besondere Sorgfalt bei Planung und Ausführung voraus, insbesondere dann, wenn Einbau von ungeschützten VIP erfol-

gt. Folgende Empfehlungen sind von Bedeutung (Großklos [2007], Binz et al. [2005], S. 63-65):

- 1. Erstellen exakter Stücklisten und Verlegepläne (Toleranzen einplanen)
- 2. Verwendung möglichst weniger Standardformate, um Kosten zu sparen und schnell Ersatz zu bekommen
- 3. zur Reduktion des Wärmebrücken-Randeffekts: Verwendung möglichst großer Formate (min. 0,5 x 0,5 m); direkt an VIP angrenzende Materialien sollten geringe Wärmeleitfähigkeit haben; VIP-freie Stellen (z.B. an den Ecken) mit sehr gutem konventionellem Dämmstoff belegen (z.B. PUR); bei Hüllmaterialien mit Metallfolien doppellagiges und mindestens 5 cm überlappendes Verlegen der Paneele. (zur Erläuterung: VIP, welche mit Metallfolien (Aluminium, Edelstahl) umhüllt sind, haben aufgrund der höheren Wärmeleitfähigkeit des Hüllmaterials einen höheren Wärmebrückenbrücken-Randeffekt als VIP, die mit metallisiertem Film beschichtet sind.)
- 4. Handwerkerschulungen sind sehr wichtig, ebenso die Koordination der Verlegearbeiten mit anderen Gewerken
- 5. Austauschbarkeit der Paneele und Überprüfung der Funktion (mit Thermografie) sollte möglich sein
- 6. Sicherer ist grundsätzlich, geschützte VIP oder VIP in vorgefertigten Konstruktionen einzusetzen

4.6.4 Welche Dämmwerte sind für VIP realistischerweise anzunehmen? Welche Erfahrungen liegen zum Verlust der Dämmwirkung aufgrund des Vakuumverlusts vor? Wie lange hält das Vakuum?

Basierend auf Ergebnissen von Schweizer Forschungsaktivitäten werden folgende Planungsrichtwerte für die Wärmeleitfähigkeit von heute erhältlichen VIP empfohlen (Binz et al. [2005], S. 2, S. 8-18): 0,008 W/mK für VIP mit metallisierten Folien als Hüllmaterial, 0,006 W/mK für VIP mit laminierter Aluminiumfolie. Diese Werte berücksichtigen Alterungseffekte (Druckverluste) und einen Feuchtigkeitszuschlag. Dem gegenüber steht eine Wärmeleitfähigkeit von neuen VIP in der Mitte des Paneels bei 0,004 W/mK. Weiters verschlechtert sich die gesamtflächenbezogene Dämmwirkung von Konstruktionen mit VIP durch verschiedene Wärmebrückeneffekte:

- 1. Wärmebrücken am Rand der Paneele aufgrund der höheren Wärmeleitfähigkeit des Hüllmaterials im Vergleich zum Paneelkern
- 2. Wärmebrücken zwischen den Paneelen aufgrund nicht zu vermeidender Luftspalten zwischen den VIP
- 3. Wärmebrücken aufgrund in der Paneelfläche angrenzender Bauteile (Plattenstöße an Mauern, Pfeiler etc.)

Je nach verwendetem Hüllmaterial, Größe der Paneele und umgebenden Materialien ergeben sich unterschiedliche Effekte, die die Wärmeleitfähigkeit der Konstruktion beeinflussen. Empfehlenswert sind möglichst große Paneele und gut dämmende umgebende Materialien. Aufgrund der relativen Neuheit der Technologie können tatsächliche Lebensdauern von VIP nur abgeschätzt werden, Alterungstests lassen

30 Jahre und mehr erwarten (Großklos [2006], Folie 6). Selbst bei Verlust des Vakuums haben VIP allerdings noch relativ gute Dämmeigenschaften: Das Kernmaterial Kieselsäure hat bei Normaldruck eine Wärmeleitfähigkeit von 0,018 W/mK.

4.6.5 Welche Firmen bieten Vakuumsysteme an? Welche Zulassungen sind erforderlich?

Derzeit gibt es Herstellerfirmen von VIP nur in Deutschland, zum Beispiel die Firmen Vaku- Isotherm, Baars oder Porextherm. In Österreich gibt es bisher keine bauaufsichtliche Zulassung, in Deutschland ist ein Verfahren im Gange. (Haselsteiner [2007], S. 24, Haselsteiner [2006]) Anmerkung: diesbezüglich ist aktueller Stand noch zu recherchieren

In Deutschland existieren bisher bauaufsichtliche Zulassungen für begrenzte Einsatzbereiche (Innenwand, Boden, Decke). Bei Außenanwendungen bedarf es einer Zustimmung im Einzelfall. Garantiefragen sind bisher offen (Großklos [2007]) Anmerkung: Stand für Österreich ist noch zu recherchieren

4.6.6 Welche Kosten sind mit Vakuumdämmung verbunden? Sind Kostensenkungen zu erwarten?

Die Materialkosten für VIP bewegen sich zwischen 60 und $100 €/m^2$ (Stand 2007, Großklos [2007], Folie 16). Jeweils für eine 2 cm Platte (U=0,24 W/(m²·K)):

- 1. Ungeschützte VIP-Platte ab 60 €/m²
- 2. Kaschiertes Panel ab $80 \in /m^2$
- 3. VIP-Fußbodenplatte: 100 €/m²

Konstruktionen mit VIP sind bei gleicher Dämmwirkung etwa doppelt so teuer wie Konstruktionen mit konventionellen Dämmstoffen (Innovative Sanierung).

Kostensenkungen sind möglich, es ist aber wahrscheinlich, daß in den nächsten 5 bis 10 Jahren VIP deutlich teurer bleiben werden als herkömmliche Dämmstoffe (Binz et al. [2005], S. 76f.)

4.6.7 Ist Vakuumdämmung in einer ganzheitlichen ökologischen Bilanzierung vertretbar?

Ein Vergleich von VIP mit EPS und Glaswolle mit Hilfe dreier verschiedener Ökobilanzierungsmethode (Eco-Indicator 99, Umweltbelastungspunkte UBP 97, Kumulierter Energieaufwand) zeigt, daß die Umweltbelastungen bei gleichem U-Wert einer Konstruktion bei der Produktion von VIP in einer ähnlichen Größenordnung liegen wie bei EPS und Glaswolle (VIPimGebäudesektor, S. 19-21).

4.6.8 In welchen "Haus der Zukunft"-Projekten wurde Vakuumdämmung eingesetzt und die dabei gemachten Erfahrungen dokumentiert?

1. "Praxis- und Passivhaustaugliche Sanierungssysteme für Dach- und Wandbauteile unter Verwendung von Hochleistungswärmedämmsystemen", (Ferle and Essl [2004]);

Sanierung einer Doppelhaushälfte mit Vakuumisolationspaneelen (VIP) im Wand-, Dach - und Terrassenbereich. Mechanisches Befestigungssystem für VIP an der Wand, VIP-PUR Mischsystem im Bereich von Terrasse und Dach.

- 2. "Project b1. Einsatz von Vakuumdämmung im Hochbau" (P097DaemmEinsatzVonVakuumDaemn Mit Hilfe eines Versuchsaufbaus wurden Befestigungssysteme für VIP (mechanische Befestigung, 3D-Dachsystem) getestet. Die getesteten Systeme wurden im Projekt Ferle and Essl [2004] (siehe oben) eingesetzt.
- 3. "Erstes Einfamilien-Passivhaus im Altbau" (Lang et al. [2007]); Verwendung von Vakuumdämmung für Dämmung der Kellerdecke (Oberseite).
- 4. "Erste Passivhaus Schulsanierung" (Lang et al. [2004]), Vakuumdämmung im Bereich der Bodenplatte, Wärmebrückensimulation für Bereich der Stahlbetonstützen (Vakuumdämmung versus konventionelle Überdämmung).
- 5. "Erste Altbausanierung auf Passivhausstandard mit Vakuum-Isolations-Paneelen (VIP)"; Sanierung eines Bauernhauses aus dem 19. Jahrhundert mit VIP, Fokus auf dynamischer Simulation des Feuchteverhaltens unter instationären (realen) Bedingungen, Projekt noch laufend.

Weiterführende Quellen: www.vip-bau.ch, www.vip-bau.de

4.7 Meßtechnische Evaluierung von Passivhaus-Projekten

Sommerverhalten, (Temperaturen, Luftfeuchte) Teilweise zu schwüle Bedingungen (zu hohe Luftfeuchte) wurden in Pr. "Utendorfgasse" gemessen (S. 12, Z. 35 sowie S. 12, Z. 34). Allerdings wurde auch der eindeutige Nachweis geführt, daß konsequentes Nachtquerlüften die Raumtemperaturen deutlich absenkt (S. 12, Z. 38 - Vergleich zwischen mehreren Wohnungen im großvolumigen Wohnbau).

Winterverhalten, Raumtemperatur Die Raumtemperaturen fielen in Pr. "Utendorfgasse" S. 12, Z. 34 ungewollt nie unter die Behaglichkeits(auslegungs)grenze.

Einhalten von Passivhauskriterien Heizlast und Heizwärmebedarf Eingehalten wurden diese beiden Parameter in Pr. "Utendorfgasse", S. 12, Z. 36.

4.7.1 Im Bad in Passivhäusern in der Regel aktive Heizung vorgesehen

Eine im Pr. "Utendorfgasse", S. 10, Z. 18 angeführte Evaluierung anderer (= "nicht-HdZ") Passivhäuser zeigte, daß selbst bei rein frischluftbeheizten Passivhäusern im Bad immer eine aktive Heizfläche vorgesehen war, um die entsprechend höhere Raumtemperatur (vgl. raumweise festgelegte Temperatur gemäß Heizlastberechnung) bedarfsgerecht erreichen zu können.

4.7.2 Wurde Thermographie eingesetzt?

Beispielsweise wurden in Pr. "SOL4", S. 24, Z. 143, und in Pr. "Weiz", S. 39, Z. 273, Thermographie eingesetzt. Im Pr. "San. Pettenbach", S. 53, Z. 370 wurde die Thermographie gleichzeitig mit dem Luftdichtheitstest (z. B zur Leckagenortung)

durchgeführt. Die besten Erkenntnisse können aus dem Bericht im Pr. "Weiz" gezogen werden, in dem die Aufnahmen sehr gut im Anhang erläutert werden. Auch im Pr. "San. Pettenbach", S. 53, Z. 371, sind Auszüge aus dem Thermographieprotokoll enthalten.

4.8 Einsatz von Nawaros

4.8.1 Ist die Genehmigung eines Gebäudes in Strohballenbauweise schwieriger zu erreichen als bei einem konventionellen Gebäude? Was ist diesbezüglich zu beachten? Welche technischen Prüfzeugnisse existieren?

Im Bereich Strohballenbau erarbeitet die Gruppe Angepaßte Technologie (GrAT) derzeit (Stand Juni 2009) eine Österreichische Technische Zulassung für Strohballen als Dämmstoff. Diese Zulassung hebt den Baustoff Stroh auf eine Ebene mit konventionellen Dämmstoffen, da Sicherheitsfaktoren wie konstante Materialeigenschaften, logistische Lösungen sowie Qualitätsmanagement im Produktions- und Logistikprozeß die Zugänglichkeit zum Massenmarkt ermöglichen sowie Berechenbarkeit und Attraktivität für Bauherren und Planer erzeugen. Die Zulassung wird innerhalb des HdZ-Projekts "StrohCert" erarbeitet (Zwischenbericht wird in Kürze veröffentlicht) und im Rahmen der Projektlaufzeit (bis Frühjahr 2010) abgeschlossen sein. http://www.hausderzukunft.at/results.html/id5447?active=

Aktuelle Rechtslage Gemäß den Bauordnungen gilt die Gleichwertigkeitsklausel: Die Verwendung von Nachwachsenden Rohstoffen im Bauwesen kann dann erfolgen, wenn z.B. ein Bausachverständiger die Gleichwertigkeit der innovativen Ausführung gegenüber der konventionellen feststellen kann (Wimmer et al. [2001b], S. 49). Der funktionelle Wert innovativer Lösungen, insbesondere die Leistungsfähigkeit Nachwachsender Rohstoffe kann durch erfolgreiche Demonstrations- und Mustervorhaben Bauherren, Planern und Behörden vor Augen geführt werden und stellt damit einen wesentlichen Beitrag zur Erhöhung der Akzeptanz dar (Wimmer et al. [2001b], S. 50).

Die Brandschutztauglichkeit von Wandaufbauten aus Strohballen wurde im Projekt "Wandsysteme aus nachwachsenden Rohstoffen" untersucht. Für den in diesem Projekt getesteten Wandaufbau (mit Strohballen gedämmte Holzständerkonstruktion, beidseitig verputzt) wurde die Brandwiderstandsklasse F90 erreicht (Wimmer et al. [2001a], S. 71) Der von der Wiener Magistratsabteilung 39 (MA 39) ausgestellte "Prüfbericht über das Brandverhalten einer Strohwand (mit Außen- und Innenputz)" ist im Anhang des Berichts abgedruckt (P159WandsystemeNAWAROsAnhang.pdf, S. 103ff). Damit kann der nach ÖNORM B3800 überprüfte Wandaufbau in geeigneter Ausführung in sämtlichen Bauteilen von Ein-, Zweifamilien- und Reihenhäusern bis 2 Geschoßen (außer Keller) sowie in überirdischen Garagen bis 100 m², landwirtschaftlichen Nebengebäuden und Wirtschaftsgebäuden uneingeschränkt eingesetzt werden. Weiters existieren technische Prüfzeugnisse zu Wärmeleitfähigkeit und Schallschutz.

Für einige Baustoffe aus Nachwachsenden Rohstoffen gibt es bereits Zulassungen, teilweise sogar auf europäischer Ebene (ETZ). Vgl. hierzu ThermoHanf: http://www.thermo-hanf.de/front_content.php?idcat=46

Mit zunehmendem Abbau bürokratischer Hürden (durch weitere Zertifizierungen, etc) und einer erweiterten fachlichen Ausbildung von Handwerkern und Planern in Bezug auf Verwendung und Eigenschaften von NAWARO-Baustoffen kann in Zukunft ein erhöhter Einsatz dieser Materialien erwartet werden.

4.8.2 Wie groß ist der ökologische Gesamtvorteil der Strohballenbauweise?

Im Pr. "S-House", S. 21, Z. 127 wird der ökologische Fußabdruck für die Strohballenwand mit ca. einem Zehntel dessen einer konventionellen Wand angegeben.

4.8.3 Wo finde ich Best-Practice Beispiele von Gebäuden in Strohballenbauweise?

"Haus der Zukunft"-Projekte Folgende "Haus der Zukunft" Demonstrationsgebäude wurden in Strohballenbaubauweise bzw. unter Verwendung des Baumaterials Stroh errichtet:

- 1. S-House (Böheimkirchen): Passiv-Bürohaus in Strohballenbauweise, zahlreiche Innovationen des ressourcenschonenden Bauens umgesetzt, http://www.hausderzukunft.at/results.html/id1752?active=, http://www.hausderzukunft.at/results.html/id3133?active=
- 2. Biohof Achleitner (Eferding): Wände in Strohballenbauweise (Teil davon sichtbar hinter hinterlüfteter Glasfassade), Raumklimatisierung mit Hilfe von Pflanzen, Mischnutzung (Laden, Restaurant, Büro), http://www.hausderzukunft.at/results.html/id3869?active=
- 3. Lehm Passiv-Bürohaus Tattendorf: Verwendung vorgefertigter Bauelemente aus Holz, Stroh und Lehm, besondere Betonung des Einsatzes des Baustoffs Lehm (Innen- und Außenbereich), http://www.hausderzukunft.at/results.html/id2758?active=
- 4. Passivhaus-Kindergarten Ziersdorf: Außenwand teilweise mit Stroh gedämmt, ansonsten Zellulosedämmung, Lehmputz, http://www.hausderzukunft.at/results.html/id3132, http://www.hausderzukunft.at/results.html/id2088

Internetplattform des Österreichischen Strohballennetzwerks (http://www.baubiologie.at/asbn/): Hier befinden sich neben verschiedenen Informationen zum Thema Strohballenbau zahlreiche Beispiele realisierter Gebäude in Strohballenbauweise: siehe strohbaugalerien.at und strohbaugalerien.eu.

- 4.8.4 Wo befinden sich Beispiele für Detaillösungen (Wärmebrückenfreiheit, Luftdichtheit, Anschlussdetails) von Konstruktionen im Strohballenbau (bzw. allgemeiner von Konstruktionen mit nachwachsenden Baustoffen)?
- 1. HdZ-Projektbericht "Wandsysteme aus Nachwachsenden Rohstoffen" (Wimmer et al. [2001a], S. 31 64): Darstellung von vier mit Stroh gedämmten Wandaufbauten als hinterlüftete Konstruktion, sowie weiteren vier mit Stroh gedämmten Wandaufbauten mit Putzfassade. Angaben zu Wärmeschutz, Feuchteverhalten, Dampfdiffusion, Luftdichtigkeit und Wärmespeicherkapazität.

2. www.nawaro.com, unter "Beispiele": Beispielaufbauten unter Verwendung verschiedener nachwachsender Rohstoffe (Stroh, Schafwolle, Flachs, Hanf, Zellulose, etc.) für die Bauteile Boden, Innenwand, Trennwand, Außenwand, Decke, Dach. Bauphysikalische Kennwerte, Ökologisches Profil, Bautechnisches Profil (Verarbeitung, Anschlüsse), Baubiologisches Profil.

4.8.5 Wie hoch ist die Gefahr von Schimmelbefall? Wie ist das allergene Potenzial von Stroh einzuschätzen?

Die Luftfeuchte im Strohballen (und damit im Zusammenhang stehend die Feuchtigkeit des Stroh-Substrats) ist entscheidend für die potenzielle Gefährdung eines Befalls mit Schimmelpilzen. Um diesbezüglich auf der sicheren Seite zu sein empfiehlt Krick [2008], S. 34, daß die relative Luftfeuchte einen Wert von 0,75 (bzw. 75%) nicht überschreiten soll. Je nach Substrat (Weizen, Gerste, Hanf, etc.) leitet sich aus dieser Forderung ein etwas unterschiedlicher Maximalwert der Materialfeuchte ab: Für Weizenstroh max. 0,13 g/g Feuchte (bzw. Feuchtegehalt 13%), für Gerste 0,15 g/g, für Roggen 0,12 g/g (Krick [2008], S. 34). Die Verwendung möglichst trockener Strohballen und diffusionsoffener Konstruktionen, die ein Austrocknen ermöglichen, ist daher bedeutsam. Zur Qualitätskontrolle von Strohballen wurde im Rahmen des HdZ-Projekts "Wandsysteme aus nachwachsenden Rohstoffen" ein mobiles Prüflabor entwickelt, mit Hilfe dessen auch der Feuchtegehalt des Strohs gemessen werden kann.

Im "Haus der Zukunft" Projekt S-House wurde zwischen 2004 und 2007 eine mikrobiologische Begleituntersuchung durchgeführt (vier Probenahmen). Die mikrobiologische Untersuchung kommt zu folgendem Schluß (Wimmer et al. [2001a], S. 65):

"In dem unbehandelten Stroh, das als Dämmmaterial am S-House verwendet wurde, kam es im Zeitraum 2004 bis 2007 zu einer erheblichen Abnahme der lebensfähigen Schimmelpilze, die natürlicherweise im Stroh vorhanden sind. Es konnte im Laufe der Messungen kein Hinweis darauf gefunden werden, daß es im Innenraum des Gebäudes zu einem durch das Dämmmaterial bedingten Anstieg der Schimmelpilzsporen kommt. Aus diesem Grunde kann das verwendete Dämmmaterial aus hygienischer Sicht als unbedenklich eingestuft werden. Diese Beurteilung gilt vorbehaltlich eines eintretenden Wasserschadens, da eine Durchnässung des Dämmmaterials zu einem erneuten Anstieg der Schimmelpilze führen könnte."

(Wagner et al., S. 79)

Allergenes Potenzial von Stroh(ballen) Zu diesem Aspekt gab es keine gesonderten Untersuchungen in "Haus der Zukunft"-Projekten. Im Bericht "Wandsysteme aus nachwachsenden Rohstoffen" wird Sekundärliteratur zitiert: "Aus der Literatur (Gruber and Gruber [2000]) läßt sich entnehmen, daß sauberes, helles Stroh ein äußerst geringes allergenes Potenzial besitzt."

4.8.6 Wie hoch ist das Risiko von Schädlingsbefall bei einer Strohballenbauweise, welche Vorkehrungen sind dagegen zu treffen?

Möglich ist, daß Strohballen aufgrund deren guter Wärmedämmwirkung von Mäusen als Behausung genutzt werden. Abhilfe kann durch Anbringen "bisssicherer" Abdeckungen (durchgängige Putzschichten, OSB-, Gipsfaserplatten o.ä.) sowie durch Verwendung von Strohballen mit einer hohen und möglichst gleichmäßigen Ballendichte geschaffen werden. (Wimmer et al. [2001a], S. 65)

In einer US-amerikanischen Studie wurde eine bestimmte Lebensmittelmottenart identifiziert, die sich vom Restkorn in Strohballen ernährt und rasch vermehrt. Einem Insektenbefall kann vorgebeugt werden durch:

- 1. Möglichst hohe Vermeidung von Verunreinigungen und Beikräuter bei der Ernte,
- 2. Geringer Restkorngehalt im Strohballen (durch längeres Dreschen)
- 3. Trockenhalten des Strohs während Ernte, Lagerung und Einbau
- 4. Verputzen der Wände möglichst rasch nach deren Errichtung. (Wimmer et al. [2001a], S. 66)

4.8.7 Welches Feuchteverhalten weisen Wände mit Dämmstoffen aus nachwachsenden Rohstoffen (Stroh, Hanf, Zellulose, Kork, Flachs) auf?

Ein hoher Feuchteschutz ist für die Beständigkeit von Konstruktionen mit Strohballen (und anderen nachwachsenden Rohstoffen) von besonderer Bedeutung, da ein hoher Feuchtigkeitsgehalt über einen längeren Zeitraum zu Schimmelbildung und Zersetzung des Strohs führen kann. Feuchteschutz bedeutet gewährzuleisten, dass

- 1. nur geringste Mengen an Kondensat anfallen und
- 2. eine hohe Austrocknungskapazität für außerplanmäßigen Feuchteeintrag zur Verfügung steht. (Wimmer et al. [2001a], S. 32, 33).

Wichtige Maßnahmen zur Vermeidung bzw. Verminderung von Feuchteschäden sind z.B. eine wasserdichte, aber diffusionsoffene Außenputzschicht, ein bauphysikalisch richtiger Schichtaufbau oder der möglichst trockene Einbau der Materialien aus nachwachsenden Rohstoffen (Wimmer et al. [2001a], S. 33, Tab. 8). In diesem Zusammenhang wird eine Empfehlung für Anbringung eines Lehmputzes auf der Innenseite gegeben: "Lehmputze unterstützen aufgrund ihrer hydrophilen Eigenschaft die Verteilung von Feuchtespitzen auf einen längeren Zeitraum (Lehmputze haben bei Fachwerkhäusern das Holz auf lange Zeit derart ausgetrocknet und konserviert, daß weder Schädlinge noch Pilze und Mikroorganismen dem Holz schaden konnten)." (Wimmer et al. [2001a], S. 61)

Im Pr. "S-House" wurden im Wandbereich Testboxen mit verschiedenen Dämmstoffen (Stroh, Hanf, Zellulose, Kork, Flachs) eingebaut und meßtechnisch untersucht (S. 18, Z. 94). Der prinzipielle Aufbau der Wand (bzw. der Testbox) ist in Abb. 1 dargestellt. An die 50 cm dicke Dämmschicht grenzt an der Wandinnenseite eine Schicht aus Kreuzlagenholz (KLH), außen wird die Dämmung von einer Schicht Lehmputz und einer hinterlüfteten Außenschalung begrenzt.

Abb. 1: Wandaufbau bzw. Aufbau der Testbox im S-House, Wagner et al., S. 22

Aus den Meßergebnissen werden folgende Schlüsse gezogen (Wagner et al., S. 43, 44, 46,):

- 1. Die Feuchte der Dämmmaterialien an der Außenseite des Wandaufbaus ändert sich nahezu ohne zeitliche Verzögerung mit der Außenfeuchte, wobei eine konstante Differenz über den Jahresverlauf zu erkennen ist. (Abb. 2)
- 2. An kritischen, sehr feuchten Tagen im Herbst und Winter liegt die relative Feuchte an der Außenseite der Testboxen an vereinzelten Tagen über 95%, wodurch es zu Kondensationserscheinungen kommen kann.
- 3. Die relative Feuchte an der Innenseite der Testboxen unterliegt im Jahresverlauf Schwankungen zwischen 30% und 55%. (Abb. 3)
- 4. Die Trendlinie für den absoluten Feuchtegehalt der Luft verläuft in der Strohdämmung flacher als in der Außenluft, was auf ein gewisses Austrocknungspotenzial in der Konstruktion schließen läßt. (Abb. 4)
- 5. Im Bodenbereich ist eine leichte Tendenz zur Feuchteanreicherung erkennbar.
- Abb. 2: Jahresverlauf der relativen Feuchte an der Außenseite der Testboxen, Wagner et al., S. 43
- Abb. 3: Jahresverlauf der relativen Feuchte an der Innenseite der Testboxen, Wagner et al., S. 43
- Abb. 4: Langzeitfeuchteverhalten der Testboxen (Wand- und Bodenbereich), Wagner et al., S. 44

4.8.8 Welche Wärmeleitfähigkeiten haben nachwachsende Rohstoffe (Unterschied Prüfbedingungen – praktischer Einsatz)?

Im Rahmen der meßtechnischen Begleituntersuchungen für das S-House wurden auch U-Werte der Versuchswandaufbauten gemessen und daraus Werte für die Wärmeleitfähigkeiten (λ) der eingesetzten Dämmstoffe Stroh, Zellulose, Kork und Flachs ermittelt.

Tab. 1: Wärmeleitfähigkeiten von Stroh, Zellulose, Kork und Flachs, Vergleich Messungen (grün umrandet) mit Angaben aus Prüfzertifikaten, Wagner et al., S. 46 Tab. 1 zeigt einen Vergleich der aus diesen Messungen ermittelten Werte mit Werten aus Herstellerangaben bzw. Prüfzertifikaten. Kork schneidet in diesem Vergleich am besten ab, die Wärmeleitfähigkeiten von Zellulose, Flachs und Stroh liegen deutlich über den unter Prüfbedingungen ermittelten Werten. Insbesondere der λ-Wert für Stroh mit 0,1 W/mK ist auffallend hoch. Begründet wird dieser hohe Wert durch erhöhten Wärmetransport über Luftkonvektion durch vermutlich größere Lufteinschlüsse an der Stelle des Meßaufbaus. Durch mangelhaften Einbau können Luftspalte in der Konstruktion entstehen (z.B. Luftspalt zwischen Wand und Strohballen oder bei unzureichend ausgestopften Zwischenräumen). Die Vermeidung von Hohlräumen in der Dämmschicht ist daher von großer Bedeutung. Vor allem bei komplizierten Anschlussdetails, wie Wand-Decke oder Decke-Boden ist daher auf eine saubere Ausführung zu achten, um die Wirkung eventuell vorhandener Wärmebrücken nicht zusätzlich zu verstärken. Wagner et al., S. 47

Ob die relativ hohen Wärmeleitfähigkeiten und damit U-Werte für die gesamte Wandkonstruktion des S-Houses Gültigkeit haben, wird im Bericht bezweifelt: "Die Ergebnisse dieser Messungen stellen lediglich ein Abbild der jeweiligen Stelle des betrachteten Messaufbaus dar, der repräsentativ sein soll, jedoch nicht zwingend sein

muss. Speziell bei der Messung von Stroh muß man auch berücksichtigen, daß es sich bei der Messstelle nicht um eine Testbox handelt. Die Gesamtperformance des Gebäudes bei einer energetischen Betrachtung lässt insgesamt auf einen niedrigeren U-Wert für den Stroh- Wandaufbau schließen."

4.8.9 Wo befinden sich herstellerübergreifende Informationen zu Bauprodukten aus Nachwachsenden Rohstoffen?

Die Informationsplattform www.nawaro.com erhält insbesondere Informationen zu Bauprodukten aus nachwachsenden Rohstoffen (Wärme- und Schalldämmung, Oberflächenvergütung, Farbstoffe, etc.), zu Baukonstruktionen aus NAWAROs und verschiedene Serviceangebote.

4.8.10 Welche Bezugsquellen für Baustoffe aus NAWAROs existieren?

- 1. Eine Liste von Firmen, welche Produkte aus NAWAROs herstellen oder vertreiben, befindet sich auf: http://www.nawaro.com/cgi-bin/unternehmen.pl
- 2. Eine wichtige Informations- und Bezugsquelle zu Strohballenbau ist das ASBN (Austrian Strawbale Network, http://www.baubiologie.at/asbn/) Kontaktperson Herbert Gruber (asbn@baubiologie.at)
- 3. Dämmstoffe aus NAWAROs vertreibt z. B. die Firma "Häuser in Wolle" (http://www.haeuser-in-wolle.com) Kontaktperson Fritz Reichel
- 4. Fragen aller Art zu NAWAROs können an die GrAT (Gruppe Angepaßte Technologie) gerichtet werden (01-58801-49523, www.grat.at)

4.8.11 Weiterführende Literatur (außer HdZ-Berichte)

Krick [2008] und Gruber and Gruber [2000].

4.8.12 Wie groß ist die Auswahl an Passivhausfenstern die im mehrgeschoßigen Wohnbau die Schallschutzanforderungen der Bauordnung erfüllen?

Marktgängige Passivhausfenster für den mehrgeschoßigen Wohnbau, die gleichzeitig auch die (strengen) Anforderungen der Wiener Bauordnung erfüllen, waren noch bis 2005 (Pr. "Mühlweg", S. 34, Z. 234) knapp bzw. nur auf spezielle Anfrage verfügbar.

4.8.13 Kann im Holzbau eine dem Massivbau vergleichbare Luftdichtheit erreicht werden?

Entgegen bisweilen anzutreffender Meinung ist eine dem Massivbau vergleichbare Luftdichtheit auch im Holzbau erreichbar.

Z. B. wurde im Pr. "Mühlweg", S. 35, Z. 241 im Rohbaustadium ein n₅₀-Wert von 0,2/h erreicht. Deutliche Verschlechterungen des Wertes im Laufe der Zeit wurden im Pr. "S-House" gemessen (Ergebnis des Luftdichtheits im Zuge des Monitorings während der Betriebsphase des Hauses), obwohl das Haus weitgehend mit KLH-Elementen gefertigt wurde (geringeres Arbeiten des Holzes wurde erwartet).

Glossar

ARA Abwasserreinigungsanlage. 54

BKA Betonkernaktivierung. 24

CEPHEUS Cost Efficient Passive Houses as European Standards. 8–10

EFH Einfamilienhaus. 56, 75

EPS Expandiertes Polystyrol. 86, 102–105

HdZ Haus der Zukunft. 17, 52

K-Glas Zwecks Wärmeschutz metallbeschichtetes Einfachglas. 49

KLH Kreuzlagenholz. 18

MSR Meß-, Steuer-, und Regeltechnik. 29

OI3 Einzahlbewertung (Ökoindex) für Baustoffe basierend auf Ökobilanzen gemäß ISO 14 040. Basiert auf den Auswirkungen in den drei ökologischen Wirkungskategorien Treibhauseffekt, Versauerungspotential und Primärenergieaufwand. 46

OSB Oriented Strand Board. 71, 72, 78

PCM Phase Change Material. 29

PHI Passivhausinstitut in Darmstadt. 25, 28, 58

PHPP Passivhaus-Projektierungspaket. 10, 15, 23, 58, 67, 76

PVC Polyvinylchlorid. 23, 24, 99

SPI Sustainable Process Index. 20

TAS Thermal Analysis Simulation Software. 76

TRNSYS Transient Energy System Simulation Tool. 15, 23, 33, 38, 73, 74

TWD Transparente Wärmedämmung. 86

VIP Vakuumisolationspaneel. 101–105

VOC Volatile Organic Compounds. 15, 19

XPS Extrudiertes Polystyrol. 80, 81

Literatur

Armin Binz et al. Vakuum-Isolations-Paneele im Gebäudesektor. Schweizer Bundesamt für Energie BFE, 2005. 108, 109, 110

A. Ferle and O. Essl. Sanierungssysteme für Dach und Wandbauteile unter Verwendung von Hochleistungswärmedämmsystemen. Österreichisches Bundesministerium für Verkehr, Innovation und Technologie, 2004. 104, 105, 106, 107, 110, 111

- Einsatz von Vakuumdämmung im Neubau und in der Sanierung Anton Ferle. (Folienpräsentation). 2007. 106, 107
- Marc Großklos. Grundlagen der Vakuumdämmung und Anwendung an der Außenwand (Folienpräsentation). Institut Wohnen und Umwelt GmbH, 2007. 109, 110
- Marc Großklos. Einsatz von Vakuumdämmung im Gebäudebereich: 2. Baustelleninfotag (Folienpräsentation). Institut Wohnen und Umwelt GmbH, 2006. 110
- Herbert Gruber and Astrid Gruber. Bauen mit Stroh, oekobuch-Verlag Stauffen. 2000. 114, 117
- E. Haselsteiner. Energetische Sanierung historischer Gebäude. Forum Planen, 11, Jun. 2006. 110
- E. Haselsteiner. Projekt(t)Raum_Haus_Zukunft. Österreichisches Bundesministerium für Verkehr, Innovation und Technologie, 2007. 110
- Innovative Sanierung. Flyer "Innovative Sanierung mit Vakuumdämmung Doppelhaushälfte Andre Salzburg". 110
- Untersuchung von Strohballen und Strohballenkonstruktionen Benjamin Krick. hinsichtlich ihrer Anwendung für energiesparendes Bauen unter besonderer Berücksichtigung der lasttragenden Bauweise. Kassel University Press, 2008. 114, 117
- Günter Lang, Heinz Plöderl, Thomas Zelger, Christoph Muss, Bernd Krauß, and Hans Christian Obermayr. Erste Passivhaus -Schulsanierung (Ein Projektbericht im Rahmen der Programmlinie Haus der Zukunft). Österreichisches Bundesministerium für Verkehr, Innovation und Technologie, 2004. 104, 105, 111
- Günter Lang, M. Lang, E. Panic, R. Wimmer, Bernd Krauß, and Hans Christian Obermayr. Erstes Einfamilien-Passivhaus im Altbau. Osterreichisches Bundesministerium für Verkehr, Innovation und Technologie, 2007. 105, 111
- Hubert Schwab et al. Entwicklung und Anwendung von evakuierten höchsteffizienten Dämmungen für Gebäude (Vakuumdämmung für Gebäude). Bayerisches Zentrum für Angewandte Energieforschung, 2003. 107, 108
- Waldemar Wagner et al. Messtechnische Begleituntersuchung für das S-House. Osterreichisches Bundesministerium für Verkehr, Innovation und Technologie. 114, 115, 116
- Robert Wimmer et al. Wandsysteme aus nachwachsenden Rohstoffen. Österreichisches Bundesministerium für Verkehr, Innovation und Technologie, 2001a. 112, 113, 114, 115
- Fördernde und hemmende Faktoren für den Einsatz Robert Wimmer et al. Nachwachsender Robstoffe im Baubereich. Osterreichisches Bundesministerium für Verkehr, Innovation und Technologie, 2001b. 112